动能定理动能定理
- 格式:pdf
- 大小:689.44 KB
- 文档页数:56
动能定理基础知识点动能定理是物理学中的基本定理之一,它描述了物体的动能与外力所做的功之间的关系。
在本文中,我将介绍动能定理的基本概念和公式,并解释其在物理学中的应用。
一、动能定理的概念动能定理是指当物体受到外力作用时,物体的动能的增量等于外力对物体所做的功。
换句话说,如果一个物体的动能从初态到末态发生变化,那么这个变化值等于外力所做的功。
动能定理的思想基于牛顿第二定律:物体的加速度与外力成正比,加速度越大,物体的动能增加得越快。
通过动能定理,我们可以通过物体动能的变化来推断外力所做的功的大小。
二、动能定理的公式动能定理可以表述为以下公式:ΔK = W其中:ΔK表示物体动能的变化量,单位为焦耳(J);W表示外力所做的功,单位也为焦耳(J)。
根据动能定理,如果一个物体的动能发生了变化,那么这个变化值等于外力所做的功。
三、动能定理的应用1. 碰撞与能量转化:在物体之间的碰撞中,根据动能定理可以推断出物体在碰撞过程中的动能转化情况。
例如,在弹性碰撞中,当两个物体碰撞之后,它们的动能是互相转化的,总的动能保持不变。
2. 机械能守恒定律:在只受重力做功的系统中,根据动能定理可以推导出机械能守恒定律。
机械能守恒定律指的是,在只受重力做功的系统中,物体的总机械能(动能和势能之和)保持不变。
3. 动能定理与力学工作:根据动能定理,我们可以计算外力所做的功。
功是物体在力的作用下沿着力的方向移动时所吸收或放出的能量。
功可以用来计算一些力学工作,比如推车沿着平面移动、抬起重物等。
4. 动能定理在运动学中的应用:动能定理也经常应用在运动学分析中,特别是在研究物体在一段时间内的加速度变化时。
根据动能定理,我们可以通过物体动能的变化来推断物体的加速度变化情况。
总结:动能定理是解决物体动能变化以及外力所做功的基本定理之一。
它提供了物体动能与外力作用之间的定量关系,并在物理学的不同领域中有着广泛的应用。
通过动能定理,我们可以深入理解物体在受力作用下的运动情况,分析碰撞、能量转化以及力学工作等问题。
动能定理动能定理(work-energy Principle)。
所谓动能,简单的说就是指物体因运动而具有的能量。
数值上等于(1/2)mv2。
动能是能量的一种,它的国际单位制下单位是焦耳(J),简称焦。
需要注意的是,动能(以及和它相对应的各种功),都是标量,即只有大小而不存在方向。
求和时只计算其代数和,不满足矢量(数学中称向量)的平行四边形法则。
概念:动能具有瞬时性,是指力在一个过程中对物体所做的功等于在这个过程中动能的变化。
动能是状态量,无负值。
外力(物体所受的外力之和,物体的最终力方向和大小可以通过正交法计算)等于物体动能的变化,即最终动能降低主要动能。
动能定理一般只涉及物体运动的始末状态,通过运动过程中做功时能的转化求出始末状态的改变量。
但是总的能是遵循能量守恒定律的,能的转化包括动能、势能、热能、光能(高中不涉及)等能的变化。
表达式:其中,Ek2表示物体的末动能,Ek1表示物体的初动能。
ΔW是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
1.动能定理研究的对象是单一的物体,或者是可以看成单一物体的物体系。
2.动能定理的计算式是等式,一般以地面为参考系。
3.动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;力可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和即可,这就是动能定理的优越性内容:质点系所有外力做功之和加上所有内力做功之和等于质点系总动能的改变量。
和质点动能定理一样,质点系动能定理只适用于惯性系,因为外力对质点系做功与参照系选择有关,而内力做功却与选择的参照系无关,因为力总是成对出现的,一对作用力和反作用力(内力)所做功代数和取决于相对位移,而相对位移与选择的参照系无关。
动能定理的内容:所有外力对物体做功,(也叫做合外力的功)等于物体的动能的变化。
牛顿第二定律只适用于宏观低速的情况,因为在相对论中F=ma是不成立的,质量随速度改变。
动能定理物体动能与功的关系动能定理是物理学中一个重要的定理,它描述了物体的动能与所受的做功之间的关系。
本文将详细介绍动能定理,并探讨物体动能与功之间的关系。
一、动能定理的定义和表达式动能定理是描述物体动能变化的定理。
它可以表达为:物体的动能变化等于物体所受的净外力所做的功。
动能定理的数学表达式为:物体的动能的变化量等于物体所受的净外力所做的功的总和。
数学表达式为:ΔKE = W_net其中,ΔKE表示物体动能的变化量,W_net表示物体所受的净外力所做的功的总和。
二、物体动能与功的关系根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
这意味着,当一个物体所受的净外力做功时,它的动能会发生变化。
1. 净外力与功的关系在动能定理中,功是由物体所受的净外力所做的。
净外力是指物体所受的所有作用力的矢量和。
功可以由净外力的大小和方向以及物体位移的大小和方向来计算。
2. 功对动能的影响根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
如果物体所受的净外力所做的功为正值,那么物体的动能将增加;如果功为负值,物体的动能将减小;如果功为零值,物体的动能将保持不变。
3. 动能与功的关系示例例如,当一个人用力推动一辆静止的小车,小车受到的作用力将进行功,将其推动到一定的位移。
这时,小车的动能将增加,同时也可以通过功的大小来计算增加的动能。
另一个示例是,当一个物体从高处自由下落时,在下落过程中,重力对物体进行功,使其动能增加。
这也可以通过功的大小来计算物体的动能增加量。
三、总结动能定理是描述物体动能与所受的净外力所做的功之间的关系的定理。
根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
净外力的大小和方向以及物体位移的大小和方向都会影响功的大小,进而影响物体动能的变化。
在实际问题中,我们可以利用动能定理来分析物体的运动情况和动能的变化。
通过计算功的大小和方向,我们可以了解物体动能的增加或减少,从而加深对动能和功之间关系的理解。
高中物理动能定理的内容与公式高中物理动能定理公式是W=(1/2)mV₁²-(1/2)mVo²=Ek₂-Ek₁,W为外力做的功,Vo是物体初速度,V₁是末速度,Ek₂表示物体的末动能,Ek₁表示物体的初动能。
W是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
动能定理研究的对象是单一的物体,或者可以称单一物体的物体系。
动能定理的计算式是等式,一般以地面为参考系。
动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;里可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和。
拓展阅读:高中物理动能定理的知识点动能定理的基本概念合外力做的功,等于物体动能的改变量,这就是动能定理的内容。
动能定理还可以表述为:过程中所有分力做的功的代数和,等于动能的改变量。
这里的合外力指研究对象受到的所有外力的合力。
动能定理的表达式动能定理的基本表达式:F合s=W=ΔEk;动能定理的其他表示方法:∫Fds=W=ΔEk;F1s1+F2s2+F3s3+……=ΔEk;功虽然是标量,但有正负一说。
最为严谨的公式是第二个公式;最常用的,有些难度的却是第三个公式。
动能定理根源我们来推导动能定理,很多学生可能认为这是没有必要的,其实恰恰相反。
近几年的高考物理试题,特别注重基础知识的推导和与应用。
理解各个知识点之间的关联,能够帮你更好的理解物理考点。
在内心理解了动能定理,知道了它的本源,才能在考试中科学运用动能定理来解题。
动能定理的推导分为如下两步:(1)匀变速直线运动下的动能定理推导过程物体做匀变速直线运动,则其受力情况为F合=ma;由匀变速直线运动的公式:2as=v2-v02;方程的两边都乘以m,除以2,有:mas=½(mv2-v02)=Ek2-Ek1=ΔEk;上述方程的左端mas=F合s=W;因此有:F合s=W=ΔEk;这就是动能定理在匀变速直线运动情况下的推导过程。
动能与动能定理的解析动能是描述物体运动状态的物理量,是物体运动所具有的能量形式。
在物理学中,动能可以通过物体质量和速度的平方来计算。
动能定理则是表明物体的动能变化量与外力所做的功等于物体所受的净作用力所做的功的关系。
一、动能的定义及计算公式动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
动能的定义公式为:动能 = 1/2 ×质量 ×速度的平方,用数学表达式表示为:K = 1/2mv²。
其中,K代表动能,m代表物体的质量,v代表物体的速度。
二、动能与速度的关系动能与物体的速度呈正比关系。
当物体的速度增加时,其动能也会相应增加。
这意味着速度越大,物体运动所具有的能量就越多,动能也就越大。
相反,当物体的速度减小时,其动能会减小。
三、动能与质量的关系动能与物体的质量呈正比关系。
质量越大,动能也就越大;质量越小,动能也就越小。
这是因为相同速度下,质量较大的物体具有更大的惯性,需要更多的能量来维持其运动状态。
四、动能定理的解析动能定理是描述物体运动状态变化的一个重要定理。
它表明,物体的动能变化量等于外力所做的功。
动能定理的数学表达式为:∆K = W,其中∆K代表动能的变化量,W代表外力所做的功。
根据动能定理,当物体受到净作用力时,它的动能会发生变化。
当物体受到正向作用力(如推力、引力等)时,该作用力所做的功为正,导致物体的动能增加;当物体受到负向作用力(如阻力、制动力等)时,该作用力所做的功为负,导致物体的动能减小。
动能定理可用来解析物体在不同情况下的动能变化。
例如,在施加恒定力的作用下,物体的速度会随时间增加,由动能定理可推导出速度与时间的关系。
同样,当物体在阻力作用下停止运动时,也可以应用动能定理来计算作用力所做的功和动能的变化量。
动能定理也可以用于解析机械能守恒的情况。
当物体只受重力等保守力的作用时,机械能(势能和动能之和)保持不变。
根据动能定理,作用力所做的功等于动能的变化量为零,从而得出机械能守恒的结论。
第11章动能定理即质点系的动能等于其随质心平BCθABθCPA2rOr C力的功2rOr CAP2rOr CAP2rOr CAPs汽车驱动问题能量角度:汽缸内气体爆炸力是内力,不改变汽车的动量,但使汽车的动能增加。
动量角度:地面对后轮的摩擦力是驱动力,使汽车的动量增加,但不做功,不改变汽车的动能。
内力不能改变质点系的动量和动量矩,但可以改变能量;外力能改变质点系的动量和动量矩,但不一定能改变能量。
例题11-8水平悬臂梁AB,B端铰接滑轮B,匀质滑轮质量m1,半径r;绳一端接滚,轮C,半径r,质量m2视为质量集中在边缘;绳另端接重物D,质量m3。
求重物加速度。
CωDv BωCv 解:末位置是一般位置hconst 01==T T =2T 2321D v m 221B B J ω+221CP J ω+运动学关系rr v v B C C D ωω===2121rm J B =2222222rm r m r m J P=+=2321222121Dv m m m T ⎟⎠⎞⎜⎝⎛++=gh m W 312=CωDv BωCv h1212W T T =−gh m T v m m m D 30232122121=−⎟⎠⎞⎜⎝⎛++对t 求导h g m vv m m m D D &&33210)221(=−++Dv h =&D D a v=&gm m m m a D 3213221++=例11-9匀质圆盘和滑块的质量均为m。
圆盘的半径为r。
杆平行于斜面,其质量不计。
斜面的倾斜角为θ。
圆盘、滑块与斜面的摩擦因数均为μ。
圆盘在斜面上作纯滚动。
试求滑块下滑加速度。
1212W T T =−01=T 2222212121mvJ mv T A ++=ω解()sF F mgs mgs W B A +−+=θθsin sin 12θμcos mg F F B A ==取导221,mrJ v r A ==ω2245mvT =()θμθcos sin 2452−=gs v a v v s==&&,()θμθcos sin 54−=g a F A 是静摩擦力,理想约束,不作功。
)(2
2b a x x −弹力对物体所作的功只与物体初始位置和终止位置有关,
与其间经过的路径无关。
质点在运动过程中受多个力作用时分力作功之和等于合力作功
W l d F l d F l d F l
d F W b a b a i i b
a
i i i
b
a
i i
i ∫∫∑∫
∑∑∫
∑=⋅=⋅⎟⎠
⎞⎜⎝⎛=⋅=
⋅= )(
3.1.3 质点系动能定理
质点系在某惯性系的动能
∑=i
ki
k E E 质点系动能定理:k
E W W Δ=+外内非惯性系中引入各质点所受惯性力作功之和W 惯,也可有相应的“质点系动能定理”
k
E W W W Δ=++外内惯内力是否作功?
第三章作业
4、7、8、9、10、12、17、18 20、22、24、26、29、33、34
§3.3 机械能定理
3.3.1 机械能定理
从力学的角度看,质点间的相互作用力或是保守性的,或是非保守性的。
⎪⎩
⎪
⎨⎧外力非保守性内力
保守性内力质点系受力
惯性系中质点系动能定理:k
E W W W Δ=++外内非保内保
将保守性内力作功之和用它们的势能代替,动能定理可改写为
)
(p k E E W W +Δ=+外内非保质点系中各对保守性内力对应的势能之和E p
各对保守性内力作功之和W 内保便等于E p 的减少量
p
E W Δ−=内保非保守性内力作功之和W 内非保,外力作功之和W 外
定义质点系动能与内势能之和为质点系机械能
p
k E E E +=质点系机械能定理
所有非保守内力作功与所有外力作功之和
等于质点系机械能增加量
E
W W Δ=+外内非保
质点系所受外力也可进一步分为保守性的和非保守性的。
保守性的外力也有对应的外势能
非惯性系中各质点所受保守性惯性力对应的势能之和E p 惯
E
W W W Δ=++外内非保惯非保其中
惯
p p k E E E E ++=
除机械能外,还有许多其它形式的能量
§3.4碰撞
宏观世界经常会发生物体间的碰撞
碰撞的特点:碰撞时间一般很短,
物体的动量有明显变化,
碰撞力很大,
常规力(如重力)与其相比提供的冲量可略。
碰撞的基本问题:已知碰撞前系统的运动状态,
要求确定碰撞后系统的运动状态。
将碰撞的物体模型化为质点
碰撞现象普遍存在!
性质:碰撞前后相对速度大小不变
20
1012v v v v −=−特例1:2
1m m =201v v =10
2v v =0
2012=>>v m m 且101v v −=(反弹)
特例2
:。