大学物理:3_1动能定理
- 格式:ppt
- 大小:266.00 KB
- 文档页数:30
动能定理原理
动能定理是物理学中的一个重要定理,它描述了物体的动能与其速度的关系。
根据动能定理,一个物体的动能等于其质量与速度平方的乘积的一半。
动能定理可以表示为以下公式:
动能 = 1/2 ×质量 ×速度²
其中,动能用K表示,质量用m表示,速度用v表示。
根据动能定理,当一个物体的速度增加时,它的动能也会增加。
同样地,当一个物体的质量增加时,它的动能也会增加。
这说明物体的动能与其速度和质量直接相关。
动能定理的应用广泛。
在机械工程中,我们可以根据物体的动能来计算其所需的能量或者进行能量转化的分析。
在运动学中,我们可以利用动能定理来计算物体的速度或者质量。
在碰撞分析中,动能定理也起到了重要的作用。
需要注意的是,动能定理只适用于质点的分析,即只考虑物体的整体运动而忽略其形状和内部结构的影响。
在实际应用中,我们需要结合具体情况来确定使用动能定理的合理性与准确性。
总之,动能定理是一个重要的物理定律,在物体的运动分析和能量转化的研究中具有广泛的应用价值。
它为我们理解物体运动和能量转化的过程提供了重要的理论基础。
3-1 以速度0v 前进的炮车,向后发射一炮弹,已知炮车的仰角为θ,炮弹和炮车的质习题3-1图量分别为m 和M ,炮弹相对炮车的出口速率为v ,如图所示。
求炮车的反冲速率是多大?[解] 以大地为参照系,取炮弹与炮弹组成的系统为研究对象,系统水平方向的动量守恒。
由图可知炮弹相对于地面的速度的水平分量为v v '-θcos ,根据动量守恒定律()()v M v v m v m M '-'-=+-θcos 0所以 ()mM mv v m M v +++='θcos 0此即为炮车的反冲速率。
3-2 质量为M 的平板车,在水平地面上无摩擦地运动。
若有N 个人,质量均为m ,站在车上。
开始时车以速度0v 向右运动,后来人相对于车以速度u 向左快跑。
试证明:(1)N 个人一同跳离车以后,车速为NmM Nmuv v ++=0(2)车上N 个人均以相对于车的速度u 向左相继跳离,N 个人均跳离后,车速为()mM mum N M mu Nm M mu v v +++-++++=' 10[证明] (1) 取车和人组成的系统为研究对象,以地面为参照系,系统的水平方向的动量守恒。
人相对于地面的速度为u v -,则()()Mv u v Nm v Nm M +-=+0所以 NmM Nmuv v ++=0(2) 设第1-x 个人跳离车后,车的速度为1-x v ,第x 个人跳离车后,车的速度为x v ,根据动量守恒定律得()[]()()[]x x 1x 1v m x N M u v m v m x N M -++-=+-+-所以 ()Mm x N muv v ++-+=-11x x此即车速的递推关系式,取N x ,,2,1 =得Mm muv v ++=-1N NMm muv v ++=--22N 1N……………………()M m N muv v +-+=112 MNm muv v ++=01将上面所有的式子相加得()Mm muM m mu M m N mu M Nm mu v v ++++++-+++=210N 此即为第N 个人跳离车后的速度,即()mM mum N M mu Nm M mu v v +++-++++=' 103-3 质量为m =0.002kg 的弹丸,其出口速率为300m ,设弹丸在枪筒中前进所受到的合力800400x F -=。
教学对象:大学物理专业学生教学目标:1. 理解动能定理的概念及其适用范围。
2. 掌握动能定理的推导过程及其应用。
3. 培养学生运用动能定理解决实际问题的能力。
教学重点:1. 动能定理的概念及其适用范围。
2. 动能定理的推导过程。
3. 动能定理的应用。
教学难点:1. 动能定理的推导过程。
2. 动能定理在复杂问题中的应用。
教学准备:1. PPT课件2. 动能定理相关习题教学过程:一、导入1. 复习动能的概念及其计算公式。
2. 引出动能定理,提出问题:如何理解动能定理?其适用范围是什么?二、讲授新课1. 动能定理的概念- 动能定理是描述物体动能变化与合外力做功之间关系的定理。
- 动能定理的数学表达式为:ΔE_k = W,其中ΔE_k表示动能的变化量,W表示合外力做的功。
2. 动能定理的适用范围- 动能定理适用于一切宏观物体,包括质点、刚体和弹性体。
- 动能定理适用于各种运动,包括匀速直线运动、匀加速直线运动、匀速圆周运动等。
3. 动能定理的推导- 以一个质点为例,推导动能定理的数学表达式。
- 分析合外力做功与质点动能变化之间的关系。
4. 动能定理的应用- 举例说明动能定理在解决实际问题中的应用。
- 分析动能定理在复杂问题中的应用,如变力作用下物体的运动。
三、课堂练习1. 学生独立完成PPT课件中的相关习题。
2. 教师解答学生提出的问题。
四、课堂小结1. 回顾本节课所学内容,总结动能定理的概念、适用范围、推导过程及应用。
2. 强调动能定理在解决实际问题中的重要性。
五、课后作业1. 完成课后习题,巩固所学知识。
2. 查阅资料,了解动能定理在实际工程中的应用。
教学反思:1. 本节课通过讲解、推导、应用等方式,使学生掌握了动能定理的概念、适用范围、推导过程及应用。
2. 在课堂练习环节,学生能够运用所学知识解决实际问题,提高了学生的实际操作能力。
3. 在教学过程中,注重培养学生的自主学习能力和创新思维,提高学生的综合素质。
第13章 动能定理一、目的要求1.对功和功率的概念有清晰的理解,能熟练地计算重力、弹性力和力矩的功。
2.能熟练地计算平动刚体、定轴转动刚体和平面运动刚体的动能,重力和弹性力的势能。
3.熟知何种约束反力的功为零,何种内力的功之和为零。
4.能熟练地应用动能定理和机械能守恒定律解动力学问题。
5.能熟练地应用动力学基本定理解动力学的综合问题。
二、基本内容1.基本概念力的功;质点和质点系的动能;动能定理;功率、功率方程、机械效率;势力场、势能、机械能守恒定律;动力学基本定理的综合应用。
2.主要公式微分形式 ∑==ni Fi W dT 1δ积分形式 ∑=-Fi W T T 12具有理想约束的质点系,其动能的改变(增量或对时间的一阶导数),等于作用于质点系的主动力的元功之和;在理想的约束条件下,质点系在某一段运动过程中起点和终点的动能改变量,等于作用于质点系的主动力在这段过程中所作的功的和。
三、重点和难点1.重点:(1)力的功和物体动能的计算。
(2)动能定理和机械能守恒定律的应用。
(3)动力学基本定理的综合问题。
2.难点:综合应用动力学基本定理求解动力学问题,运动学补充条件(方程)的提出。
四、教学建议1.教学提示(1)讲清力的功的一般形式,反复练习重力的功、弹性力的功和力矩的功的计算,搞清圆轮纯滚时摩擦力为什么不作功。
(2)在复习物理课程有关内容的基础上,熟练计算刚体系统的动能,强调动能表达式中的速度(角速度)一定用绝对速度(绝对角速度);反复练习取整体为研究对象,用动能定理求运动的问题;强调用动能定理的积分形式可求解任何运动问题;强调用动能定理解题是以整体为研究对象。
(3)讲清动量、动量矩定理与动能定理的异同点。
通过练习,明确各定理适合求解的问题及解题特点。
(4)本章重点是动力学基本定理的综合应用,要多举各种类型的例子,把握“先求运动后求力”的解题思路,使学生熟练掌握。
强调求运动,可用动能定理,求力可用动量定理(质心运动定理)或达朗伯原理。
大学物理上公式总结(力学)(一)引言概述:大学物理力学是物理学的基础课程之一,它涉及了许多重要的物理量和公式。
在本文档中,将对大学物理力学部分的公式进行总结和分析。
以下将以五个大点来归类和阐述这些公式,旨在帮助读者更好地理解和应用力学知识。
正文内容:一、运动学公式1. 位移公式:位移(s)等于速度(v)乘以时间(t)。
2. 速度公式:速度(v)等于位移(s)除以时间(t)。
3. 加速度公式:加速度(a)等于速度变化量(Δv)除以时间(Δt)。
4. 平均速度公式:平均速度(v)等于总位移(Δs)除以总时间(Δt)。
5. 平均加速度公式:平均加速度(a)等于速度变化量(Δv)除以总时间(Δt)。
二、力学公式1. 牛顿第一定律:物体在无外力作用下保持静止或匀速直线运动。
2. 牛顿第二定律:物体的加速度(a)等于作用在物体上的合力(F)除以物体的质量(m)。
3. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
4. 重力公式:物体所受的重力(F)等于物体的质量(m)乘以重力加速度(g)。
5. 弹力公式:弹性力(F)等于物体的弹性系数(k)乘以物体的弹性形变量(x)。
三、动能与势能公式1. 动能公式:物体的动能(K)等于物体质量(m)乘以速度的平方(v²)再乘以0.5。
2. 势能公式(重力场):物体在重力场中的势能(U)等于物体质量(m)乘以重力加速度(g)乘以高度(h)。
3. 动能定理:物体的净工作(功)等于物体的动能变化量(ΔK)。
4. 势能定理:物体的净工作(功)等于物体的势能变化量(ΔU)。
5. 机械能守恒定律:封闭系统中,机械能(E)等于动能与势能之和,保持不变。
四、动量与冲量公式1. 动量公式:物体的动量(p)等于物体质量(m)乘以物体的速度(v)。
2. 冲量公式:物体所受的冲量(J)等于物体的质量(m)乘以物体的加速度(a)乘以撞击时间(Δt)。
3. 动量定理:物体受到的总冲量等于物体的动量变化量。
课时安排:2课时教学目标:1. 知识目标:理解并掌握动能定理的基本概念、公式及其应用。
2. 能力目标:培养学生运用动能定理解决实际问题的能力,提高学生的科学思维和创新能力。
3. 思想道德目标:通过学习动能定理,培养学生的爱国主义精神、严谨的科学态度和团队合作意识。
教学重点:1. 动能定理的基本概念和公式。
2. 动能定理在解决实际问题中的应用。
教学难点:1. 动能定理的理解和运用。
2. 思想道德教育融入教学过程。
教学过程:一、导入1. 利用多媒体展示我国航天事业取得的辉煌成就,如嫦娥五号、天问一号等,激发学生的民族自豪感和爱国情怀。
2. 引入物理学家牛顿、伽利略等人物,介绍他们在物理学领域的重要贡献,激发学生对科学研究的兴趣。
二、新课讲授1. 讲解动能定理的基本概念:动能定理是描述物体在运动过程中动能变化与所受合外力做功之间关系的定律。
2. 推导动能定理的公式:F合·s=ΔEk,其中F合表示合外力,s表示物体位移,ΔEk表示动能的变化。
3. 通过实例讲解动能定理的应用,如汽车刹车、弹簧振子等。
三、思想道德教育融入教学过程1. 结合我国航天事业的发展,引导学生思考:是什么力量推动了我国航天事业的快速发展?答案:是科技创新、团结协作、坚持不懈的精神。
2. 通过分析牛顿、伽利略等物理学家的事迹,教育学生要树立严谨的科学态度,勇于探索未知领域。
3. 强调团队合作的重要性,鼓励学生在学习过程中相互帮助、共同进步。
四、课堂练习1. 给出几个实际问题,让学生运用动能定理进行求解,巩固所学知识。
2. 学生分组讨论,针对实际问题提出解决方案,培养学生的创新意识和团队协作能力。
五、总结1. 总结动能定理的基本概念、公式及其应用。
2. 强调思想道德教育的重要性,引导学生树立正确的价值观。
教学反思:1. 本节课通过引入我国航天事业的发展,激发了学生的民族自豪感和爱国情怀,将思政教育融入教学过程。
2. 通过实例讲解动能定理的应用,提高了学生的科学思维和创新能力。