大学物理2-3功 动能 动能定理
- 格式:ppt
- 大小:951.50 KB
- 文档页数:18
大一物理公式大全力学:1. 牛顿第二定律:F = ma,力等于质量乘以加速度。
2. 动能定理:K = 1/2 mv²,动能等于质量乘以速度的平方的一半。
3.势能定理:W=ΔU,功等于势能的变化量。
4. 弹簧势能:U = 1/2 kx²,弹簧的势能等于弹性系数乘以位移的平方的一半。
5.万有引力定律:F=G(m₁m₂)/r²,两个质点之间的引力等于引力常数乘以质量的乘积除以两点距离的平方。
热学:1.热力学第一定律:ΔU=Q-W,内能的变化等于热量减去做功。
2. 热容量:Q = mcΔT,热量等于质量乘以比热容乘以温度变化。
3.理想气体状态方程:PV=nRT,压强乘以体积等于摩尔数乘以气体常数乘以温度。
4.热传导定律:Q=kA(ΔT/d),热量传导等于导热系数乘以传热面积乘以温度差除以厚度。
电磁学:1.库仑定律:F=k(q₁q₂)/r²,两个电荷之间的力等于库仑常数乘以电荷的乘积除以两点距离的平方。
2.电场强度:E=F/q₀,电场强度等于力除以测试电荷的大小。
3.高斯定理:∮E•dA=Q/ε₀,电场通过封闭曲面的通量等于包围在曲面内的电荷除以真空电介质常数。
4.电势能:U=qV,电势能等于电荷乘以电势。
5.安培定律:B=(μ₀/4π)(I/R),电流元产生的磁感应强度等于真空磁导率的乘积除以4π乘以电流除以电流元到磁场观察点的距离。
光学:1. Snell定律:n₁sinθ₁ = n₂sinθ₂,光线在两个介质界面上的折射定律。
2.薄透镜公式:1/f=1/d₀+1/d₁,透镜的焦距和物距、像距的关系。
3.杨氏干涉公式:Δy=λL/d,相邻两条干涉条纹之间的位移。
这些公式只是物理学中的冰山一角,还有更多公式需要学习和掌握,希望以上公式能对您有所帮助。
教学对象:大学物理专业学生教学目标:1. 理解动能定理的概念及其适用范围。
2. 掌握动能定理的推导过程及其应用。
3. 培养学生运用动能定理解决实际问题的能力。
教学重点:1. 动能定理的概念及其适用范围。
2. 动能定理的推导过程。
3. 动能定理的应用。
教学难点:1. 动能定理的推导过程。
2. 动能定理在复杂问题中的应用。
教学准备:1. PPT课件2. 动能定理相关习题教学过程:一、导入1. 复习动能的概念及其计算公式。
2. 引出动能定理,提出问题:如何理解动能定理?其适用范围是什么?二、讲授新课1. 动能定理的概念- 动能定理是描述物体动能变化与合外力做功之间关系的定理。
- 动能定理的数学表达式为:ΔE_k = W,其中ΔE_k表示动能的变化量,W表示合外力做的功。
2. 动能定理的适用范围- 动能定理适用于一切宏观物体,包括质点、刚体和弹性体。
- 动能定理适用于各种运动,包括匀速直线运动、匀加速直线运动、匀速圆周运动等。
3. 动能定理的推导- 以一个质点为例,推导动能定理的数学表达式。
- 分析合外力做功与质点动能变化之间的关系。
4. 动能定理的应用- 举例说明动能定理在解决实际问题中的应用。
- 分析动能定理在复杂问题中的应用,如变力作用下物体的运动。
三、课堂练习1. 学生独立完成PPT课件中的相关习题。
2. 教师解答学生提出的问题。
四、课堂小结1. 回顾本节课所学内容,总结动能定理的概念、适用范围、推导过程及应用。
2. 强调动能定理在解决实际问题中的重要性。
五、课后作业1. 完成课后习题,巩固所学知识。
2. 查阅资料,了解动能定理在实际工程中的应用。
教学反思:1. 本节课通过讲解、推导、应用等方式,使学生掌握了动能定理的概念、适用范围、推导过程及应用。
2. 在课堂练习环节,学生能够运用所学知识解决实际问题,提高了学生的实际操作能力。
3. 在教学过程中,注重培养学生的自主学习能力和创新思维,提高学生的综合素质。