第一章-概率论的基础知识
- 格式:ppt
- 大小:1.19 MB
- 文档页数:72
第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间: 概率论术语。
我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。
样本空间的元素,即E 的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。
互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。
互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。
概率论必备知识点概率论是一门研究随机现象数量规律的数学分支,它在各个领域都有着广泛的应用,从物理学、生物学、经济学到计算机科学等。
以下是一些概率论中的必备知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
概率则是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
计算概率的方法有多种。
对于等可能事件,概率等于事件所包含的基本结果数除以总的基本结果数。
例如,掷一个骰子,出现点数为 3的概率就是 1/6,因为骰子共有 6 个面,每个面出现的可能性相等,而点数为 3 的只有 1 种情况。
二、古典概型古典概型是一种最简单的概率模型。
在古典概型中,试验的结果是有限的,并且每个结果出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率,这就是一个古典概型问题。
计算古典概型的概率,可以使用公式:P(A) = n(A) /n(Ω),其中P(A)表示事件 A 发生的概率,n(A)表示事件 A 包含的基本结果数,n(Ω)表示总的基本结果数。
三、几何概型几何概型是古典概型的推广,当试验的结果是无限的,且每个结果出现的可能性相等时,就可以使用几何概型来计算概率。
例如,在一个时间段内等待公交车,求等待时间不超过 5 分钟的概率。
在几何概型中,概率等于事件对应的区域长度(面积或体积)除以总的区域长度(面积或体积)。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
例如,已知今天下雨,明天晴天的概率就是一个条件概率。
条件概率的计算公式为:P(B|A) = P(AB) / P(A),其中 P(B|A)表示在事件 A 发生的条件下事件 B 发生的概率,P(AB)表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率。
高等数理统计笔记高等数理统计笔记第一章:概率论基础1.1 概率的引入1.2 概率的公理化定义1.3 概率的基本性质1.4 条件概率与独立性1.5 全概率公式与贝叶斯公式1.6 随机变量的引入与分布函数1.7 随机变量的分布函数及其性质1.8 随机变量的密度函数及其性质1.9 随机变量的数字特征第二章:多维随机变量及其分布2.1 二维随机变量及其联合分布函数2.2 二维随机变量的联合密度函数及其性质2.3 二维随机变量的条件分布函数及其性质2.4 二维随机变量的条件密度函数及其性质2.5 相互独立的随机变量2.6 随机变量的函数的分布及其性质2.7 两个随机变量的和的分布及其性质第三章:大数定理与中心极限定理3.1 大数定理的概念3.2 切比雪夫不等式3.3 伯努利大数定理3.4 辛钦大数定理3.5 中心极限定理的概念3.6 李雅普诺夫中心极限定理3.7 林德贝格-列维中心极限定理3.8 中心极限定理的应用第四章:参数估计4.1 点估计的概念与性质4.2 最大似然估计法4.3 矩估计法4.4 经验分布函数与分位数的估计4.5 贝叶斯估计第五章:假设检验5.1 总体均值检验的基本知识5.2 单个总体均值的假设检验5.3 单个总体比例的假设检验5.4 两个总体均值的假设检验5.5 两个总体比例的假设检验5.6 方差的假设检验5.7 单个总体分布的非参数检验5.8 两个总体分布的非参数检验第六章:方差分析与回归分析6.1 方差分析的基本概念6.2 单因素方差分析6.3 多因素方差分析6.4 回归分析的概念与简单回归6.5 最小二乘估计法6.6 多元回归分析第七章:统计抽样与抽样分布7.1 抽样调查的概念与方法7.2 抽样分布及其基本性质7.3 样本均值的分布7.4 样本平均数与总体均值的关系7.5 样本方差与总体方差的关系7.6 样本比与总体比的关系第八章:贝叶斯统计推断8.1 贝叶斯定理及其含义8.2 贝叶斯估计量的概念与性质8.3 最大后验概率估计8.4 确定性问题的贝叶斯推断方法第九章:序贯统计与时间序列分析9.1 序贯统计的概念与应用9.2 时间序列的基本概念与应用9.3 平稳序列与非平稳序列的区别9.4 自相关函数与自协方差函数9.5 平稳序列的谱分析9.6 自回归模型与移动平均模型9.7 估计方法与模型诊断第十章:非参数统计方法10.1 非参数统计的基本概念10.2 秩和检验10.3 秩和检验的应用10.4 秩次相关检验10.5 Friedmann检验10.6 克鲁斯卡尔-华里斯检验以上是一份高等数理统计的笔记,涵盖了概率论基础、多维随机变量及其分布、大数定理与中心极限定理、参数估计、假设检验、方差分析与回归分析、统计抽样与抽样分布、贝叶斯推断、序贯统计与时间序列分析、非参数统计方法等内容,共计6000字。
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A B A =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
大一概率论的基本知识点概率论是一门研究随机现象的理论,它在现代科学和工程技术等领域有广泛应用。
大一学习概率论时,我们需要掌握一些基本的知识点。
本文将介绍大一概率论的基本知识点,包括随机事件、概率、条件概率、独立性等。
一、随机事件随机事件是由一个随机试验产生的结果,它可以是一个具体的值,也可以是一个范围。
例如,掷一枚骰子后,出现的点数就是一个随机事件。
随机事件通常用大写字母表示,如A、B等。
二、概率概率是指随机事件发生的可能性大小。
概率的取值范围是0到1之间,表示从不发生到必然发生的程度。
概率可以通过实验或统计的方法估计,也可以通过理论计算得出。
三、概率公理概率论建立在概率公理的基础上。
概率公理包括三个部分:非负性、规范性和可列可加性。
非负性指概率的取值必须大于等于0;规范性指全样本空间的概率为1;可列可加性指对于两个互不相容的事件,它们的概率可以相加。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率可以用P(A|B)表示,表示在事件B发生的情况下,事件A发生的概率。
条件概率的计算公式为P(A|B) = P(A∩B) / P(B)。
五、独立性两个事件A和B是独立的,指的是事件A的发生与否不会影响事件B的发生概率,反之亦然。
如果事件A和事件B是独立的,那么它们的联合概率等于各自的概率的乘积,即P(A∩B) = P(A) *P(B)。
六、贝叶斯定理贝叶斯定理是概率论中的重要定理,它用于计算在已知某个事件发生的条件下,另一个事件发生的概率。
根据贝叶斯定理,可以将条件概率的计算方向颠倒。
贝叶斯定理的表达式为P(A|B) = P(B|A) * P(A) / P(B),其中P(B|A)表示在事件A发生的情况下,事件B发生的概率。
七、随机变量随机变量是对随机试验结果的数量化描述。
随机变量可以是离散的或连续的。
离散随机变量只能取有限个或可列个值,例如投掷一枚硬币的结果可以是正面或反面;连续随机变量可以取无限个值,例如测量一个人的身高。
概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。
例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。
每次试验都不可能发生的事情称为不可能事件,记为①。
例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。
例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。
在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。
例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。
试验中所有样本点构成的集合称为样本空间。
记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。