高一物理专题训练:天体运动(带答案)
- 格式:doc
- 大小:173.50 KB
- 文档页数:6
============================================================================富顺一中高一星期天辅导( 7)——物理试卷1、一个卫星绕着某一星球作匀速圆周运动,轨道半径为 R1 ,因在运动过程中与宇宙尘埃和小陨石的摩擦和碰撞,导致该卫星发生跃迁,轨道半径减小为 R2 ,如图所示,则卫星的线速度、角速度,周期的变化情况是 [ ]A. 增大,增大,减小;B. 减小,增大,增大;C. 增大,减小,增大;D. 减小,减小,减小。
2、科学家们推测,太阳系的第十颗行星就在地球的轨道上 .从地球上看,它永远在太阳背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟” .由以上信息可以推知( )A.这颗行星的公转周期与地球相等B.这颗行星的自转周期与地球相等C.这颗行星的质量与地球质量相等D.这颗行星的密度与地球密度相等3、 2012 年 10 月 25 日,我国在西昌卫星发射中心成功将一颗北斗导航卫星发射升空并送入预定转移轨道。
这是一颗地球静止轨道卫星,将与先期发射的 15 颗北斗导航卫星组网运行,形成区域服务能力。
关于这颗地球静止轨道卫星的说法正确的是A.它的周期与月球绕地球运动的周期相同 B.它在轨道上运动时可能经过北京的上空C.它运动时的向心加速度大于重力加速度 D.它运动的线速度比地球第一宇宙速度小4、(2013 浙江省嘉兴市质检)某同学设想驾驶一辆由火箭提供动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球的速度可以任意增加,不计空气阻力。
当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,下列相关说法正确的是(已知地球半径 R=6400km, g 取9.8m/s2)A. 汽车在地面上速度增加时对地面的压力增大B. 汽车速度达到 7.9km/s 时将离开地球C. 此“航天汽车”环绕地球做匀速圆周运动的最小周期为 24hD . 此“航天汽车”内可用弹簧测力计测重力的大小5、 ( 2013 陕西省西安市五校联考)如图所示, a、b 、c、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星。
高一物理天体试题及答案一、单项选择题(每题3分,共30分)1. 地球同步卫星的周期与地球自转周期相同,因此()A. 同步卫星一定在赤道上空B. 同步卫星一定在两极上空C. 同步卫星一定在赤道平面内D. 同步卫星一定在黄道平面内答案:C2. 假设地球是一个质量分布均匀的球体,其半径为R,自转周期为T,万有引力常数为G,地球表面的重力加速度为g,则地球的质量M可以表示为()A. M = gR^2/GT^2B. M = gR^2T^2/GC. M = gR^2/GD. M = gR^2T^2/G答案:A3. 人造地球卫星绕地球做匀速圆周运动,下列说法正确的是()A. 卫星离地面越高,线速度越大B. 卫星离地面越高,周期越大C. 卫星离地面越高,加速度越小D. 卫星离地面越高,向心力越大答案:B4. 月球绕地球做匀速圆周运动,下列说法正确的是()A. 月球的轨道半径越大,周期越长B. 月球的轨道半径越大,周期越短C. 月球的轨道半径越大,线速度越小D. 月球的轨道半径越大,加速度越小5. 地球同步卫星相对于地球是静止的,下列说法正确的是()A. 同步卫星的向心力由重力提供B. 同步卫星的向心力由电磁力提供C. 同步卫星的向心力由万有引力提供D. 同步卫星的向心力由离心力提供答案:C6. 假设地球是一个质量分布均匀的球体,其半径为R,自转周期为T,万有引力常数为G,地球表面的重力加速度为g,则地球同步卫星的轨道半径r可以表示为()A. r = 3gR^2/GT^2B. r = gR^2T^2/GC. r = gR^2/GD. r = gR^2T^2/G^27. 假设地球是一个质量分布均匀的球体,其半径为R,自转周期为T,万有引力常数为G,地球表面的重力加速度为g,则地球同步卫星的线速度v可以表示为()A. v = √(gR^2/T^2)B. v = √(gR^2T^2/G)C. v = √(gR^2/G)D. v = √(gR^2T^2/G^2)答案:A8. 假设地球是一个质量分布均匀的球体,其半径为R,自转周期为T,万有引力常数为G,地球表面的重力加速度为g,则地球同步卫星的周期T'可以表示为()A. T' = √(gR^2/GT^2)B. T' = gR^2T^2/GC. T' = gR^2/GD. T' = gR^2T^2/G^2答案:B9. 假设地球是一个质量分布均匀的球体,其半径为R,自转周期为T,万有引力常数为G,地球表面的重力加速度为g,则地球同步卫星的加速度a可以表示为()A. a = gR^2/GT^2B. a = gR^2T^2/GC. a = gR^2/GD. a = gR^2T^2/G^2答案:A10. 假设地球是一个质量分布均匀的球体,其半径为R,自转周期为T,万有引力常数为G,地球表面的重力加速度为g,则地球同步卫星的向心力F可以表示为()A. F = gR^2/GT^2B. F = gR^2T^2/GC. F = gR^2/GD. F = gR^2T^2/G^2答案:C二、填空题(每题4分,共20分)11. 地球同步卫星的轨道高度约为________千米。
1.天体运动基础巩固1.(多选)下列说法正确的是()A.地心说认为:地球是宇宙的中心,太阳、月亮以及其他星球都绕地球运动B.哥白尼的日心说认为:宇宙的中心是太阳,所有行星都绕太阳做匀速圆周运动C.太阳是静止不动的,地球由西向东自转,使得太阳看起来自东向西运动D.地心说是错误的,日心说是正确的答案:AB解析:由物理学史可知,地心说认为地球是宇宙的中心,日心说认为太阳是宇宙的中心,日心说和地心说都有一定的局限性,可见A、B正确,C、D错误。
2.(多选)关于开普勒第三定律r 3T2=k ,下列说法正确的是()A.k值对所有的天体都相同B.该公式适用于围绕太阳运行的所有行星C.该公式也适用于围绕地球运行的所有卫星D.以上说法都不对答案:BC解析:开普勒第三定律r 3T2=k中的k只与中心天体有关,对于不同的中心天体,k不同,A 错。
此公式虽由行星运动规律总结所得,但它也适用于其他天体的运动,包括卫星绕地球的运动,B、C对,D错。
3.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳位于()A.F2B.AC.F1D.B答案:A解析:根据开普勒第二定律:太阳和行星的连线在相等的时间内扫过相同的面积,因为行星在A点的速率比在B点的速率大,所以太阳和行星的连线必然是行星与F2的连线,故太阳位于F2。
4.已知两颗行星的质量m1=2m2,公转周期T1=2T2,则它们绕太阳运转轨道的半长轴之比为()A.a1a2=12B.a1a2=21C.a1a2=√43 D.a1a2=√43答案:C解析:由a 3T2=k知,a13a23=T12T22,则a1a2=√43,与行星质量无关。
5.太阳系有八大行星,八大行星离地球的远近不同,绕太阳运转的周期也不相同。
下列图像能反映周期与轨道半径关系的是()答案:D解析:由开普勒第三定律知R 3T2=k,所以R3=kT2,D正确。
6.行星A、B的质量分别为m1和m2,绕太阳运行的轨道半长轴分别为r1和r2,则A、B的公转周期之比为()A.√r1r2B.r13r23C.√r13r23D.无法确定答案:C解析:由开普勒第三定律r 3T2=k,得r13T12=r23T22,所以T12T22=r13r23,T1T2=√r13r23,C正确。
3.已知地球的同步卫星的轨道半径约为地球半径的6.0倍,根据你知道的常识,可以估算出地球到月球的距离,这个距离最接近( ) A .地球半径的40倍 B .地球半径的60倍 C .地球半径的80倍 D .地球半径的100倍10据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是A.运行速度大于7.9 km/sB.离地面高度一定,相对地面静止C.绕地球运行的角速度比月球绕地球运行的角速度大D.向心加速度与静止在赤道上物体的向心加速度大小相等4.宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部的最低点,静止一质量为m 的小球(可视为质点),如图所示,当给小球水平初速度υ0时,刚好能使小球在竖直平面内做完整的圆周运动。
已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G 。
若在月球表面上发射一颗环月卫星,所需最小发射速度为( ) A .Rr r550υB .Rr r520υC .Rr r50υD .Rr r5520υ3.(6分)(红河州模拟)“神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知飞船的质量为m ,地球半径为R ,地面处的重力加速度为g .则飞船在上述圆轨道上运行的动能E k ( ) A . 等于mg (R+h ) B . 小于mg (R+h ) C . 大于mg (R+h ) D . 等于mgh7(沈阳质量检测 ).为了探测x 星球,总质量为1m 的探测飞船载着登陆舱在以该星球中心为圆心的圆轨道上运动,轨道半径为1r ,运动周期为1T 。
随后质量为2m 的登陆舱脱离飞船,变 轨到离星球更近的半径为2r 的圆轨道上运动,则A .x 星球表面的重力加速度211214T r g π= B .x 星球的质量213124GT r M π= C .登陆舱在1r 与2r 轨道上运动时的速度大小之比122121r m r m v v = D .登陆舱在半径为2r 轨道上做圆周运动的周期131322T r r T = 答案:BD5. (北京房山期末) GPS 导航系统可以为陆、海、空三大领域提供实时、全天候和全球性的导航服务,它是由周期约为12h 的卫星群组成。
高中物理综合训练题(天体物理)解题要求:天体运动主要围绕以下两个考点复习: 1、地表:F=2r GMm =mg 2、圆周运动:2r GmM = m r v 2 = m rw 2 = mr 22T 4π 1、已知第一宇宙速度为7.90千米/秒,如果一颗人造卫星距地面的高度为3倍的地球半径,它的环绕速度是( B )A .7.90km/sB .3.95 km/sC .1.98km/sD .由于卫星质量不知,所以不能确定2、2008年9月25日21时10分“神舟七号”载人飞船发射升空,进入预定轨道后绕地球自西向东作匀速圆周运动,运行轨道距地面343Km .绕行过程中,宇航员进行了一系列科学实验,实现了我国宇宙航行的首次太空行走.在返回过程中,9月28日17时30分返回舱主降落伞打开,17时38分安全着陆.下列说法正确的是( AB )A .飞船做圆周运动的圆心与地心重合B .载人飞船轨道高度小于地球同步卫星的轨道高度C .载人飞船绕地球作匀速圆周运动的速度略大于第一宇宙速度7.9km /sD .在返回舱降落伞打开后至着地前宇航员处于失重状态3、2008年9 月25日22时03分,在神舟七号载人飞船顺利进入环绕轨道后,人们注意到这样一个电视画面,翟忠刚放开了手中的飞行手册,绿色的封面和白色的书页在失重的太空中飘浮起来。
假设这时宇航员手中有一铅球,下面说法正确的是( ACD )A .宁航员可以毫不费力地拿着铅球B .快速运动的铅球撞到宇航员,宇航员可以毫不费力将其抓住C .快速运动的铅球撞到宇航员,宇航员仍然能感受到很大的撞击力D .投出铅球,宇航员可以观察到铅球做匀速直线运动4、2008年9月25日,我国利用“神州七号”飞船将翟志刚、刘伯明、景海鹏三名宇航员送入太空。
设宇航员测出自己绕地球做圆周运动的周期为T ,离地高度为H ,地球半径为R ,则根据T 、H 、R 和引力常量G ,能计算出的物理量是( ABD )A .地球的质量B .地球的平均密度C .飞船所需的向心力D .飞船线速度的大小5、质量为m 的人造地球卫星在地面上的重力为F ,它在距地面为R (R 为地球的半径)的圆形轨道上运行时( BC )A .线速度为mFR 2 B .周期为F mR 24π C .动能为R F ⋅41 D .所受重力为06、几十亿年来,月球总是以同一面对着地球,人们只能看到月貌的59%,由于在地球上看不到月球的背面,所以月球的背面蒙上了一层十分神秘的色彩.试通过对月球运动的分析,说明人们在地球上看不到月球背面的原因是( D )A .月球的自转周期与地球的自转周期相同B .月球的自转周期与地球的公转周期相同C .月球的公转周期与地球的自转周期相同D .月球的公转周期与月球的自转周期相同7、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。
高一物理天体运动试题答案及解析1.16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个基本观点,目前看来这四个观点中存在缺陷的是 ().A.宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动B.地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动C.天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象D.与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多【答案】ABC【解析】行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;行星在椭圆轨道上运动的周期T和轨道半长轴满足=恒量,故所有行星实际并不是在做匀速圆周运动.太阳不是宇宙的中心,整个宇宙在不停地运动.2.设行星绕恒星运动轨道为圆形,则它运动的周期平方与轨道半径的三次方之比T2/R3=K为常数,此常数的大小:()A.只与恒星质量有关,恒星质量越大,K值越小B.与恒星质量和行星质量均有关,二者质量乘积越大,K值越大C.只与行星质量有关D.与恒星和行星的速度有关【答案】A【解析】开普勒第三定律中的公式,可知半长轴的三次方与公转周期的二次方成正比.A、式中的k只与恒星的质量有关,与行星质量无关,故A正确;B、式中的k只与恒星的质量有关,与行星质量无关,故B错误;C、式中的k只与恒星的质量有关,故C错误;D、式中的k只与恒星的质量有关,与行星质量无关,故D错误;故选:A【考点】万有引力定律及其应用.点评:行星绕太阳虽然是椭圆运动,但我们可以当作圆来处理,同时值得注意是周期是公转周期3.关于公式R3/T2=k,下列说法中正确的是:()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错【答案】D【解析】适合一切天体的运动,A错误,k值和中心天体的质量有关,所以不同星球的行星或者卫星的k值不同,同一中心天体的k值相同,BC错误,D正确故选D【考点】考查了对开普勒第三定律的理解点评:关键是知道公式中的k值与中心天体有关,不同中心天体k值不同,同一中心天体k值相同4.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳是位于( )A.F2B.A C.F1D.B【答案】A【解析】开普勒第二定律的内容,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积.如图所示,行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上.如果时间间隔相等,即t2-t1=t4-t3,那么面积t2F1t1=面积t4F2t3由此可知行星在远日点B的速率最小,在近日点A的速率最大。
高一物理专题训练:天体运动一、单选题1.如图所示,有两个绕地球做匀速圆周运动的卫星.一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,;另一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,.关于这些物理量的比例关系正确的是()A.B.C.D.【答案】D2.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为() A.1B.k2C.kD.【答案】C3.假设火星和地球都是球体,火星的质量与地球质量之比,火星的半径与地球半径之比,那么火星表面的引力加速度与地球表面处的重力加速度之比等于(忽略行星自转影响)A.B.C.D.【答案】B4.土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约1.2×106 km,土星的质量约为A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg【答案】B5.有一质量为M 、半径为R 、密度均匀的球体,在距离球心O 为2R 的地方有一质量为m 的质点.现从M 中挖去半径为12R 的球体,如图所示,则剩余部分对m 的万有引力F 为( )A .2736GMm R B .278GMm R C .218GMm R D .2732GMm R 【答案】A6.已知地球的质量是月球质量的81倍,地球半径大约是月球半径的4倍,不考虑地球、月球自转的影响,以上数据可推算出 [ ]A .地球表面的重力加速度与月球表面重力加速度之比为9:16B .地球的平均密度与月球的平均密度之比为9:8C .靠近地球表面沿圆轨道运动的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9D .靠近地球表面沿圆轨道运行的航天器的线速度与靠近月球表面沿圆轨道运行的航天器的线速度之比约为81:4【答案】C7.中新网2018年3月4日电:据外媒报道,美国航空航天局(NASA)日前发现一颗名为WASP-39b 的地外行星,该行星距离地球约700光年,质量与土星相当,它白天温度为776.6摄氏度,夜间也几乎同样热,因此被科研人员称为“热土星”。
物理试题天体运动及答案一、选择题(每题2分,共10分)1. 以下哪项不是开普勒描述的行星运动定律?A. 行星沿椭圆轨道绕太阳运动B. 行星绕太阳运动的角速度是恒定的C. 行星绕太阳运动的周期的平方与轨道半长轴的立方成正比D. 行星与太阳的连线在相等时间内扫过的面积相等2. 根据牛顿的万有引力定律,两个物体之间的引力大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比。
以下哪个选项正确描述了这一定律?A. 引力与两物体质量的乘积成正比,与距离的平方成正比B. 引力与两物体质量的乘积成反比,与距离的平方成反比C. 引力与两物体质量的乘积成正比,与距离的平方成反比D. 引力与两物体质量的乘积成反比,与距离的平方成正比3. 地球的自转周期大约是24小时,这导致了什么现象?A. 季节变化B. 潮汐现象C. 昼夜交替D. 地球的公转4. 月球绕地球公转的周期大约是27.3天,这与地球自转周期的不同步导致了什么现象?A. 季节变化B. 潮汐现象C. 月食D. 日食5. 根据牛顿的第二定律,以下哪个选项正确描述了力与加速度的关系?A. 力与加速度成正比B. 力与加速度成反比C. 力与加速度成正比,与质量成反比D. 力与加速度成反比,与质量成正比二、填空题(每题2分,共10分)1. 地球绕太阳公转的轨道近似为_________。
2. 根据开普勒第三定律,行星绕太阳运动的周期的平方与轨道半长轴的立方成正比,这个定律也被称为_________定律。
3. 牛顿的万有引力定律公式为_________,其中G是引力常数,m1和m2是两个物体的质量,r是它们之间的距离。
4. 地球的自转轴与公转轨道平面的夹角称为_________,其大小约为23.5°。
5. 潮汐现象是由于_________和_________之间的引力作用造成的。
三、简答题(每题5分,共10分)1. 简述牛顿的万有引力定律及其在天体运动中的应用。
物理专项题13天体运动全解全析热点题型一 开普勒定律 万有引力定律的理解与应用 1.开普勒行星运动定律(1)行星绕太阳的运动通常按圆轨道处理.(2)开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.(3)开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.2.万有引力定律公式F =G m 1m 2r 2适用于质点、均匀介质球体或球壳之间万有引力的计算.当两物体为匀质球体或球壳时,可以认为匀质球体或球壳的质量集中于球心,r 为两球心的距离,引力的方向沿两球心的连线.【例1】为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为( ) A .2∶1 B .4∶1 C .8∶1 D .16∶1 【答案】 C【解析】 由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T 2P T 2Q =r 3Pr 3Q .因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.【变式1】(2017·高考全国卷Ⅱ)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 【答案】CD【解析】在海王星从P 到Q 的运动过程中,由于引力与速度的夹角大于90°,因此引力做负功,根据动能定理可知,速率越来越小,C 项正确;海王星从P 到M 的时间小于从M 到Q 的时间,因此从P 到M 的时间小于T 04,A 项错误;由于海王星运动过程中只受到太阳引力作用,引力做功不改变海王星的机械能,即从Q 到N 的运动过程中海王星的机械能守恒,B 项错误;从M 到Q 的运动过程中引力与速度的夹角大于90°,因此引力做负功,从Q 到N 的过程中,引力与速度的夹角小于90°,因此引力做正功,即海王星从M 到N 的过程中万有引力先做负功后做正功,D 项正确.热点题型二 万有引力与重力的关系 1.地球表面的重力与万有引力地面上的物体所受地球的吸引力产生两个效果,其中一个分力提供了物体绕地轴做圆周运动的向心力,另一个分力等于重力.(1)在两极,向心力等于零,重力等于万有引力;(2)除两极外,物体的重力都比万有引力小;(3)在赤道处,物体的万有引力分解为两个分力F 向和mg 刚好在一条直线上,则有F =F 向+mg ,所以mg =F -F 向=GMmR 2-mRω2自. 2.星体表面上的重力加速度(1)在地球表面附近的重力加速度g (不考虑地球自转);mg =G mM R 2,得g =GM R2.(2)在地球上空距离地心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2 所以g g ′=(R +h )2R 2.【例2】近期天文学界有很多新发现,若某一新发现的星体质量为m 、半径为R 、自转周期为T 、引力常量为G .下列说法正确的是( ) A .如果该星体的自转周期T <2π R 3Gm,则该星体会解体 B .如果该星体的自转周期T >2πR 3Gm,则该星体会解体 C .该星体表面的引力加速度为Gm RD .如果有卫星靠近该星体表面做匀速圆周运动,则该卫星的速度大小为Gm R【答案】 AD【解析】 如果在该星体“赤道”表面有一物体,质量为m ′,当它受到的万有引力大于跟随星体自转所需的向心力时,即G mm ′R 2>m ′R 4π2T 2时,有T >2πR 3Gm,此时,星体处于稳定状态不会解体,而当该星体的自转周期T <2πR 3Gm时,星体会解体,故选项A 正确,B 错误;在该星体表面,有G mm ′R 2=m ′g ′,所以g ′=G mR2,故选项C错误;如果有质量为m ″的卫星靠近该星体表面做匀速圆周运动,有G mm ″R 2=m ″v 2R,解得v =GmR,故选项D 正确. 【变式2】(2019·安徽皖南八校联考)一颗在赤道上空做匀速圆周运动运行的人造卫星,其轨半径上对应的重力加速度为地球表面重力加速度的四分之一,则某一时刻该卫星观测到地面赤道最大弧长为(已知地球半径为R ) ( )A.23πRB.12πRC.13πRD.14πR 【答案】 A【解析】 卫星所在高度处G Mm r 2=mg ′,而地球表面处G Mm R 2=mg ,因为g ′=14g ,解得r =2R ,则某一时刻该卫星观测到地面赤道的弧度数为2π3,则观测到地面赤道最大弧长为23πR ,故选A.热点题型三 中心天体质量和密度的估算 应用公式时注意区分“两个半径”和“两个周期”(1)天体半径和卫星的轨道半径,通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径. (2)自转周期和公转周期,自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.【例3】为了研究某彗星,人类先后发射了两颗人造卫星.卫星A 在彗星表面附近做匀速圆周运动,运行速度为v ,周期为T ;卫星B 绕彗星做匀速圆周运动的半径是彗星半径的n 倍.万有引力常量为G ,则下列计算不正确的是 ( )A .彗星的半径为vT 2πB .彗星的质量为v 3T4πGC .彗星的密度为3πGT 2D .卫星B 的运行角速度为2πT n 3【答案】 B【解析】 由题意可知,卫星A 绕彗星表面做匀速圆周运动,则彗星的半径满足:R =vT2π,故A正确;根据G Mm R 2=m v 2R ,解得M =v 3T 2πG ,故B 错误;彗星的密度为ρ=M V =M 43πR 3=3πGT2,故C 正确;根据G Mm r 2=mω2r ,GMm R 2=mR 4π2T 2,r =nR ,则卫星B 的运行角速度为2πT n 3,故D 正确. 【变式3】我国计划于2019年发射“嫦娥五号”探测器,假设探测器在近月轨道上绕月球做匀速圆周运动,经过时间t (小于绕行周期),运动的弧长为s ,探测器与月球中心连线扫过的角度为θ(弧度),引力常量为G ,则( )A .探测器的轨道半径为 θtB .探测器的环绕周期为 πtθC .月球的质量为 s 3Gt 2θD .月球的密度为 3θ24Gt【答案】C【解析】利用s =θr ,可得轨道半径r =s θ,选项A 错误;由题意可知,角速度ω=θt ,故探测器的环绕周期T =2πω=2πθt=2πt θ,选项B 错误;根据万有引力提供向心力可知,G mM r 2=m v 2r,再结合v=s t 可以求出M =v 2r G =Gst s θ⋅⎪⎭⎫ ⎝⎛2=s 3Gt 2θ,选项C 正确;由于不知月球的半径,所以无法求出月球的密度,选项D 错误.热点题型四 同步卫星的运行规律分析 4.解决天体圆周运动问题的两条思路(1)在中心天体表面或附近而又不涉及中心天体自转运动时,万有引力等于重力,即G MmR 2=mg ,整理得GM =gR 2,称为黄金代换.(g 表示天体表面的重力加速度) (2)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=m v 2r =mrω2=m 4π2r T2=ma n . 【例4】.(2016·高考全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A .1 h B .4 h C .8 h D .16 h 【答案】B【解析】设地球半径为R ,画出仅用三颗地球同步卫星使地球赤道上任意两点之间保持无线电通讯时同步卫星的最小轨道半径示意图,如图所示.由图中几何关系可得,同步卫星的最小轨道半径r =2R .设地球自转周期的最小值为T ,则由开普勒第三定律可得,(6.6R )3(2R )3=(24 h )2T 2,解得T ≈4 h ,选项B 正确.【变式4-1】(2019·合肥调研)2018年7月27日,发生了“火星冲日”现象,火星运行至距离地球最近的位置,火星冲日是指火星、地球和太阳几乎排列成一条直线,地球位于太阳与火星之间,此时火星被太阳照亮的一面完全朝向地球,所以明亮易于观察,地球和火星绕太阳公转的方向相同,轨道都近似为圆,火星公转轨道半径为地球的1.5倍,则下列说法正确( )A .地球与火星的公转角速度大小之比为2∶3B .地球与火星的公转线速度大小之比为3∶2C .地球与火星的公转周期之比为8∶27D .地球与火星的向心加速度大小之比为27∶8【答案】 C【解析】 根据G Mm r 2=m v 2r =mω2r =m 4π2r T 2=ma ,解得ω=GMr 3,则地球与火星的公转角速度大小之比为364,选项A 错误;v =GM r ,则地球与火星的公转线速度大小之比为62,选项B 错误;T =2πr 3GM ,则地球与火星的公转周期之比为8∶27 ,选项C 正确;a =GMr2,则地球与火星的向心加速度大小之比为9∶4,选项D 错误.【变式4-2】(2019·广东省揭阳市期末)如图所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )A .卫星a 的角速度小于c 的角速度B .卫星a 的加速度大于b 的加速度C .卫星a 的运行速度大于第一宇宙速度D .卫星b 的周期大于24 h 【答案】 A【解析】 根据公式G Mmr2=mω2r 可得ω=GMr 3,运动半径越大,角速度越小,故卫星a 的角速度小于c 的角速度,A 正确;根据公式G Mm r 2=ma 可得a =GMr 2,由于a 、b 的轨道半径相同,所以两者的向心加速度大小相同,B 错误;第一宇宙速度是近地轨道卫星做圆周运动的最大环绕速度,根据公式G Mm r 2=m v 2r可得v =GMr,半径越大,线速度越小,所以卫星a 的运行速度小于第一宇宙速度,C 错误;根据公式G Mm r 2=m 4π2T 2r 可得T =2πr 3GM,故轨道半径相同,周期相同,所以卫星b 的周期等于24 h ,D 错误.热点题型五 宇宙速度的理解与计算 1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 21R得v 1=GMR=7.9×103 m/s. 方法二:由mg =m v 21R得v 1=gR =7.9×103 m/s.第一宇宙速度是发射地球人造卫星的最小速度,也是地球人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面附近做匀速圆周运动. (2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间. 【例5】(多选)(2019·河南新乡模拟)美国国家科学基金会宣布,天文学家发现一颗迄今为止与地球最类似的行星,该行星绕太阳系外的红矮星Gliese581做匀速圆周运动.这颗行星距离地球约20光年,公转周期约为37天,它的半径大约是地球的1.9倍,表面重力加速度与地球相近.下列说法正确的是 ( ) A .该行星的公转角速度比地球大 B .该行星的质量约为地球质量的3.6倍 C .该行星第一宇宙速度为7.9 km/sD .要在地球上发射航天器到达该星球,发射速度只需达到地球的第二宇宙速度即可 【答案】 AB【解析】该行星的公转周期约为37天,而地球的公转周期为365天,根据ω=2πT可知该行星的公转角速度比地球大,选项A 正确;忽略星球自转的影响,根据万有引力等于重力列出等式:G Mm R 2=mg ,解得:g =GMR 2,这颗行星的重力加速度与地球相近,它的半径大约是地球的1.9倍,所以它的质量是地球的3.6倍,故B 正确;要在该行星表面发射人造卫星,发射的速度最小为第一宇宙速度,第一宇宙速度v =GMR,R 为星球半径,M 为星球质量,所以这颗行星的第一宇宙速度大约是地球的2倍,而地球的第一宇宙速度为7.9 km/s ,故该星球的第一宇宙速度为2×7.9 km/s =11.2 km/s ,故C 错误;由于这颗行星在太阳系外,所以航天器的发射速度至少要达到第三宇宙速度,故D 错误. 【变式5】.(多选)(2019·安徽师大附中期中)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星的公转视为匀速圆周运动.忽略行星自转影响,火星和地球相比 ( )行星 半径/m 质量/kg 公转轨道半径/m地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×1011A.火星的“第一宇宙速度”约为地球的第一宇宙速度的0.45倍 B .火星的“第一宇宙速度”约为地球的第一宇宙速度的1.4倍 C .火星公转的向心加速度约为地球公转的向心加速度的0.43倍D .火星公转的向心加速度约为地球公转的向心加速度的0.28倍 【答案】AC【解析】根据第一宇宙速度公式v =GMR (M 指中心天体火星或地球的质量)得v 火v 地=M 火R 地M 地R 火=0.45,故A 正确,B 错误;根据向心加速度公式a =GM r 2(M 指中心天体太阳的质量)得a 火a 地=r 2地r 2火=1.522.32=0.43,故C 正确,D 错误.热点题型六 近地卫星、赤道上的物体及同步卫星的运行问题 【例6】(多选)(2019·大庆中学模拟)如图所示,A 表示地球同步卫星,B 为运行轨道比A 低的一颗卫星,C为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是 ( )A .vB >v A >vC B .ωA >ωB >ωC C .F A >F B >F CD .T A =T C >T B 【答案】 AD【解析】 A 、C 的角速度相等,由v =ωr ,可知v C <v A ,由人造卫星的速度公式:v =GMr,可知v A <v B ,因而v B >v A >v C ,故A 正确; A 、C 的角速度相等,根据ω=GMr 3知A 的角速度小于B 的角速度,故ωA =ωC <ωB ,故B 错误;由万有引力公式可知,F =GMmr 2,即半径越大,万有引力越小,故F A <F B <F C ,故C 错误;卫星A 为同步卫星,周期与C 物体周期相等,又万有引力提供向心力,即:GMm r 2=m (2πT)2r ,T =2πr 3GM,所以A 的周期大于B 的周期,故T A =T C >T B ,故D 正确.【变式6】.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的半径为R ,第一宇宙速度为v 2,则下列比例关系中正确的是 ( ) A.a 1a 2=r R B.a 1a 2=(r R )2 C.v 1v 2=r R D.v 1v 2=Rr【答案】AD【解析】设地球质量为M ,同步卫星的质量为m 1,地球赤道上物体的质量为m ,根据向心加速度和角速度的关系有a 1=ω21r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R,选项A 正确;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm R 2=m v 22R ,解得v 1v 2=Rr,选项D 正确.热点题型七 双星 【例7】(2018·全国卷Ⅰ·20)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A .质量之积 B .质量之和 C .速率之和 D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示每秒转动12圈,角速度已知中子星运动时,由万有引力提供向心力得Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解.【变式7】双星系统由两颗绕着它们中心连线上的某点旋转的恒星组成.假设两颗恒星质量相等,理论计算它们绕连线中点做圆周运动,理论周期与实际观测周期有出入,且T 理论T 观测=n1(n >1),科学家推测,在以两星球中心连线为直径的球体空间中均匀分布着暗物质,设两星球中心连线长度为L ,两星球质量均为m ,据此推测,暗物质的质量为 ( ) A .(n -1)m B .(2n -1)m C.n -14mD.n -28m【答案】C【解析】双星运动过程中万有引力提供向心力:G m 2L 2=m L 2(2πT 理论)2,解得T 理论=2π2L 3Gm;设暗物质的质量为M ′,对星球由万有引力提供向心力G m 2L 2+G M ′m (L 2)2=m L 2(2πT 观测)2,解得T观测=2π2L 3G (m +4M ′).根据T 理论T 观测=n 1,联立以上可得:M ′=n -14m ,选项C 正确.热点题型八 卫星的变轨问题人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ. 2.物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .因在A 点加速,则v A >v 1,因在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B . (2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B 点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律a 3T2=k 可知T 1<T 2<T 3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3. 卫星参数变化分析【例8】(多选)如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是 ( )A .卫星在轨道3上的速率小于在轨道1上的速率B .卫星在轨道3上的角速度大于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度 【答案】 AD【解析】 由万有引力提供向心力得:v =GMr,则半径大的速率小,则A 正确;由万有引力提供向心力得:ω=GMr 3,则半径大的角速度小,则B 错误;在同一点所受的地球的引力相等,则加速度相等,故C 错误,D 正确. 【方法技巧】(1)卫星的变轨问题要用到圆周运动中“离心运动”和 “近心运动”的知识去分析;(2)卫星在太空中某点的加速度a =GMr 2,与卫星的运动轨迹无关,仅由卫星的位置决定.【变式8】(2017·高考全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( ) A .周期变大 B .速率变大 C .动能变大 D .向心加速度变大 【答案】C【解析】组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2R,可得v =GMR,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πRv ,则周期T 不变,A项错误;质量变大、速率不变,动能变大,C 项正确;向心加速度a =GMR 2,不变,D 项错误.卫星变轨的能量分析 【例9】(2019·陕西省宝鸡市质检二)如图所示,质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭圆轨道Ⅱ的变轨过程进入半径为R 3的圆形轨道Ⅲ继续绕地球运动,其中P 点为Ⅰ轨道与Ⅱ轨道的切点,Q 点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是( )A .卫星在轨道Ⅰ上的动能为G Mm2R 1B .卫星在轨道Ⅲ上的机械能等于-G Mm2R 3C .卫星在Ⅱ轨道经过Q 点时的加速度小于在Ⅲ轨道上经过Q 点时的加速度D .卫星在Ⅰ轨道上经过P 点时的速率大于在Ⅱ轨道上经过P 点时的速率 【答案】 AB【解析】 在轨道Ⅰ上,有:G Mm R 12=m v 12R 1,解得:v 1=GM R 1,则动能为E k1=12mv 12=GMm2R 1,故A 正确;在轨道Ⅲ上,有:G Mm R 32=m v 32R 3,解得:v 3=GM R 3,则动能为E k3=12mv 32=GMm 2R 3,引力势能为E p =-GMm R 3,则机械能为E =E k3+E p =-GMm 2R 3,故B 正确;由G Mm R Q 2=ma 得:a =GMR Q 2,两个轨道上Q 点到地心的距离不变,故向心加速度的大小不变,故C 错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P 点时必须点火加速,即卫星在Ⅰ轨道上经过P 点时的速率小于在Ⅱ轨道上经过P 点时的速率,故D 错误. 【变式9】(2019·河北省唐山市上学期期末)登陆火星需经历如图所示的变轨过程,已知引力常量为G ,则下列说法正确的是( )A .飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T ⅠB .飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能C .飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气D .若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度 【答案】 ACD【解析】 根据开普勒第三定律a 3T 2=k 可知,飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T Ⅰ,选项A 正确;飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气,从而使飞船减速到达轨道Ⅰ,则在轨道Ⅰ上机械能小于在轨道Ⅱ的机械能,选项B 错误,C 正确;根据G MmR 2=mω2R以及M =43πR 3ρ,解得ρ=3ω24πG,即若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度,选项D 正确.热点题型九 卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻.【例10】在赤道平面内有三颗在同一轨道上运行的卫星,三颗卫星在此轨道均匀分布,其轨道距地心的距离为地球半径的3.3倍,三颗卫星自西向东环绕地球转动.某时刻其中一颗人造卫星处于A 城市的正上方,已知地球的自转周期为T ,地球同步卫星的轨道半径约为地球半径的6.6倍,则A 城市正上方出现下一颗人造卫星至少间隔的时间约为 ( )A .0.18TB .0.24TC .0.32TD .0.48T 【答案】 A【解析】 地球的自转周期为T ,即地球同步卫星的周期为T ,根据开普勒第三定律得: (6.6r )3T 2=(3.3r )3T 21 解得:T 1=18T 下一颗人造卫星出现在A 城市的正上方,相对A 城市转过的角度为2π3,则有(2πT 1-2πT )t =2π3解得:t ≈0.18T ,故应选A. 【方法技巧】对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【变式10】.(2019·河南洛阳尖子生一联)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上,这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”,假设地球公转轨道半径为R ,“金星凌日”每隔t 0年出现一次,则金星的公转轨道半径为( )A.t 01+t 0R B .R(t 01+t 0)3 C .R3(1+t 0t 0)2D .R3(t 01+t 0)2 【答案】D【解析】根据开普勒第三定律有R 3金R 3=T 2金T 2地,“金星凌日”每隔t 0年出现一次,故(2πT 金-2πT 地)t 0=2π,已知T 地=1年,联立解得R 金R =3(t 01+t 0)2,因此金星的公转轨道半径R 金=R 3(t 01+t 0)2,故D 正确.【题型演练】 1.(2019·湖北武汉调研)如图为人造地球卫星的轨道示意图,LEO 是近地轨道,MEO 是中地球轨道,GEO 是地球同步轨道,GTO 是地球同步转移轨道.已知地球的半径R =6 400 km ,该图中MEO 卫星的周期约为(图中数据为卫星近地点、远地点离地面的高度)( )A .3 hB .8 hC .15 hD .20 h 【答案】A【解析】根据题图中MEO 卫星距离地面高度为4 200 km ,可知轨道半径约为R 1=10 600 km ,同步轨道上GEO 卫星距离地面高度为36 000 km ,可知轨道半径约为R 2=42 400 km ,为MEO 卫星轨道半径的4倍,即R 2=4R 1.地球同步卫星的周期为T 2=24 h ,运用开普勒第三定律,R 13R 23=T 12T 22,解得T 1=3 h ,选项A 正确.2.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为L 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( )A.πL 3GrT 2B.3πL GrT 2C.16πL 3GrT 2 D .3πL 16GrT 2 【答案】B【解析】据题意,已知月球上单摆的周期为T ,据单摆周期公式有T =2πLg,可以求出月球表面重力加速度为g =4π2L T 2;根据月球表面物体重力等于月球对它万有引力,有G MmR 2=mg ,月球平均密度设为ρ,M =ρV =43πr 3ρ,联立以上关系可以求得ρ=3πLGrT 2,故选项B 正确.3.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙飞船所在处的地球引力加速度,F N 表示人对秤的压力,下面说法中正确的是( )A .g ′=r 2R 2gB .g ′=R 2r 2gC .F N =m r R gD .F N =m Rrg【答案】B【解析】做匀速圆周运动的飞船及其上的人均处于完全失重状态,台秤无法测出其重力,故F N =0,C 、D 错误;对地球表面的物体,G Mm R 2=mg ,宇宙飞船所在处,G Mm r 2=mg ′,可得g ′=R 2r 2g ,A 错误,B 正确.4.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍.那么,一个在地球表面能举起64 kg 物体的人,在这个行星表面能举起的物体的质量约为(地球表面重力加速度g 取10 m/s 2)( ) A .40 kg B .50 kg C .60 kg D .30 kg 【答案】A【解析】在地球表面,万有引力近似等于重力GMm R 2=mg ,得g =GMR 2,因为行星质量约为地球质量的6.4倍,其半径约为地球半径的2倍,则行星表面重力加速度是地球表面重力加速度的1.6倍,而人的举力可认为是不变的,则人在行星表面所举起的物体的质量为m =m 01.6=641.6kg =40 kg ,故A 正确. 5(2019·河北石家庄模拟)如图所示,人造卫星A 、B 在同一平面内绕地心O 做匀速圆周运动,已知AB 连线与AO 连线间的夹角最大为θ,则卫星A 、B 的线速度之比为( )A .sin θ B.1sin θC.sin θD.1sin θ【答案】C【解析】由题图可知,当AB 连线与B 所在的圆周相切时,AB 连线与AO 连线的夹角θ最大,由几何关系可知,sin θ=r B r A ;根据G Mm r 2=m v 2r可知,v =GM r ,故v Av B=r Br A=sin θ,选项C 正确. 6.(2019·河北沧州一中高三月考)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动;b是近地轨道地球卫星;c是地球的同步卫星;d 是高空探测卫星.它们均做匀速圆周运动,各卫星排列位置如图所示,则( )。
高一物理专题训练:天体运动
一、单选题
1.如图所示,有两个绕地球做匀速圆周运动的卫星.一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,;另一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,.关于这些物理量的比例关系正确的是( )
A.B.C.D.
【答案】D
2.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为() A.1
B.k2
C.k
D.
【答案】C
3.假设火星和地球都是球体,火星的质量与地球质量之比,火星的半径与地球半径之比,那么火星表面的引力加速度与地球表面处的重力加速度之比等于(忽略行星自转影响)
A.B.C.D.
【答案】B
4.土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约1。
2×106 km,土星的质量约为
A .5×1017 kg
B .5×1026 kg
C .7×1033 kg
D .4×1036 kg
【答案】B
5.有一质量为M 、半径为R 、密度均匀的球体,在距离球心O 为2R 的地方有一质量为m 的质点.现从M 中挖去半径为12
R 的球体,如图所示,则剩余部分对m 的万有引力F 为( )
A .
2736GMm R B .2
78GMm R C .218GMm R D .2732GMm R 【答案】A
6.已知地球的质量是月球质量的81倍,地球半径大约是月球半径的4倍,不考虑地球、月球自转的影响,以上数据可推算出 [ ]
A .地球表面的重力加速度与月球表面重力加速度之比为9:16
B .地球的平均密度与月球的平均密度之比为9:8
C .靠近地球表面沿圆轨道运动的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9
D .靠近地球表面沿圆轨道运行的航天器的线速度与靠近月球表面沿圆轨道运行的航天器的线速度之比约为81:4
【答案】C
7.中新网2018年3月4日电:据外媒报道,美国航空航天局(NASA)日前发现一颗名为WASP-39b 的地外行星,该行星距离地球约700光年,质量与土星相当,它白天温度为776.6摄氏度,夜间也几乎同样热,因此被科研人员称为“热土星"。
若在“热土星”表面发射一颗轨道半径为R1的人造卫星,周期为T1;在地球上发射一颗轨道半径为4R1的人造卫星,周期为T2,已知“热土星"质量约为地球质量的100倍,则T1:T2约为
A .1:8
B .1:80
C .8:1
D .80:1
【答案】B
8.如图所示,由A、B组成的双星系统,绕它们连线上的一点做匀速圆周运动,其运行周期为T,A、B间的距离为L,它们的线速度之比=2,则()
A.AB角速度比为:
B.AB质量比为:=
C.A星球质量为:MA=
D.两星球质量为:MA+MB=
【答案】D
9.设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R.宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计
的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2=。
假设第三次在赤道
平面内深度为的隧道底部,示数为F3;第四次在距行星表面高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4。
已知均匀球壳对壳内物体的引力为零,则以下判断正确的是()
A.F3=,F4=
B.F3=,F4=0
C.F3=,F4=0
D .F3=
,F4=
【答案】B 10.我国在深海领域有了重大的发展,“蛟龙号"载人潜水器在西南印度洋“龙旅”热液区完成两次下潜科考任务。
若把地球看做质量分布均匀的球体,且质量分布均匀的球壳对壳内物体的引力为零。
已知地球半径为R ,“蛟龙号”下潜深度为d ,地球表面重力加速度为g ,球体积计算公式是.则“蛟龙号"所在处的重力加速度大小是
A .
B .
C .
D .
【答案】C
11.一艘宇宙飞船,飞近某一行星,并靠近该星表面的圆形轨道绕行数圈后,着陆在该行星表面上.宇航员在绕行时测出飞船的周期为T ,着陆后用弹簧秤测出质量为m 的物体重力为F (万有引力常量为G),那么,该星球的质量为( )
A .
B .
C .
D .
【答案】B
12.地球可视为质量均匀分布的球体。
用弹簧秤测某物体重力大小,在北极点称时读数为F1,在赤道上称时读数为F2;地球自转周期为T ,万有引力常量为G 。
则地球密度的表达式为
A .()12123F GT F F π-
B .()1221
3F F GT F π- C .
213GT π D .1223F GT F π 【答案】A
二、多选题
13.如图所示,两星球相距为L ,质量比为mA ∶mB =1∶9,两星球半径远小于L 。
从星球A 沿A 、B 连线向B 以某一初速度发射一探测器.只考虑星球A 、B 对探测器的作用,下列说法正确的是( )
A .探测器的速度一直减小
B .探测器在距星球A 为处加速度为零
C.若探测器能到达星球B,其速度可能恰好为零
D.若探测器能到达星球B,其速度一定大于发射时的初速度
【答案】BD
14.我国计划于2018年择机发射“嫦娥五号”航天器,假设航天器在近月轨道上绕月球做匀速圆周运动,经过时间t(小于绕行周期),运动的弧长为s,航天器与月球中心连线扫过的角度为θ(弧度),引力常量为G,则()
A.航天器的轨道半径为B.航天器的环绕周期为
C.月球的的质量为D.月球的密度为
【答案】C
15.万有引力定律能够很好地将天体运行规律与地球上物体运动规律具有的内在一致性统一起来。
用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。
已知地球质量为M,万有引力常量为G。
将地球视为半径为R质量均匀分布的球体.下列选项中说法正确的是
A.在赤道地面称量时,弹簧秤读数为
B.在北极地面称量时,弹簧秤读数为
C.在北极上空高出地面h处称量时,弹簧秤读数为
D.在赤道上空高出地面h处称量时,弹簧秤读数为
【答案】BC
16.太空中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行。
设这三个星体的质量均为M,并设两种系统的运动周期相同,则( )
A.直线三星系统运动的线速度大小为
B.三星系统的运动周期为
C.三角形三星系统中星体间的距离为
D.三角形三星系统的线速度大小为【答案】BC。