集合的基本概念
- 格式:ppt
- 大小:1.59 MB
- 文档页数:13
一、 集合的概念1. 集合:某些指定的对象集在一起成为集合.集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉; 2. 集合的性质:确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;二、 集合的表示:表示一个集合可用列举法、描述法或图示法;1. 列举法:把集合中的元素一一列举出来,写在大括号内;例如:{1,2,3,4,5},{1,2,3,4,5,} 2. 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内.例如:大于3的所有整数表示为:{|3}x x ∈>Z方程2250x x --=的所有实数根表示为:{x ∈R |2250x x --=}具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.3. 常用数集及其记法:非负整数集(或自然数集),记作N ;正整数集,记作*N 或N +;整数集,记作Z ;有理数集,记作Q ;实数集,记作R .三、 集合之间的关系1. 若集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂); 2. 简单性质:1)A ⊆A ;2)∅⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;3. 真子集关系:对于两个集合A 与B ,若A B ⊆且.A B ≠,则集合A 是集合B 的真子集,记作A B (或B A ) 4. 相等关系:对于两个集合A 与B ,如果A B ⊆,且B A ⊆ ,那么集合A 与B 相等,记作A B =5. 0,{0},∅,{}∅之间的区别与联系①0与{0}是不同的,0只是一个数字,而{0}则表示集合,这个集合中含有一个元素0,它们的关系是0{0}∈②∅与{0}是不同的,∅中没有任何元素,{0}则表示含有一个元素0的集合,它们的关系是两个集合之间的关系({}0∅)③∅与{}∅是不同的,∅中没有任何元素,{}∅则表示含有一个元素∅的集合,它们的关系是{}∅∈∅或{}∅⊆∅或{}∅∅ ④显然,0∉∅,0{}∉∅集合的概念及其关系6. 子集个数问题设集合A 中元素个数为n ,则①子集的个数为2n ,②真子集的个数为21n -,③非空真子集的个数为22n - 一、 交集、并集、补集概念1. 由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集. 记作A B (读作“A 交B ”),即{|,A B x x A =∈且}x B ∈① 数学符号表示:{|,A B x x A =∈且}x B ∈② Venn 图反映:2. 由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集.并集{|}A B x x A x B =∈∈或.(读作“A 并B ”)① 数学符号表示: {|,A B x x A =∈或}x B ∈② Venn 图反映:3. 补集的概念:全集:一般地,如果一个集合含有我们所研究的问题中涉及的所有元素,那么就称这个集合为全集,通常记作U补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作U A ,即{|,U A x x U =∈且}x A ∉①数学符号表示:{|,U A x x U =∈且}x A ∉②Venn 图反映:二、集合的运算性质B AB A B A B AB A B A B A A UA U 集合的基本运算(1),,;A A A A A B B A =∅=∅=(2),;A A A B BA ∅==(3)()();AB A B ⊆ (4);A B A B A A B A B B ⊆⇔=⊆⇔=;(5)()()(),()()().U U U U U U A B A B A B A B ==三、 容斥原理()()()()card A B card A card B card A B =+-.。
集合的全部知识点总结集合是数学中的一个基本概念,它是由确定的元素组成的整体。
在数学中,集合论是一个独立的分支,它研究集合的性质、运算和关系。
本文将对集合的基本概念、运算和性质进行总结。
一、集合的基本概念1. 集合符号:集合常用大写字母表示,如A、B、C。
元素通常用小写字母表示,如a、b、c。
2. 集合的表示方法:集合可以通过列举元素的方式表示,例如A={1, 2, 3};也可以用描述性的方式表示,例如B={x | x是自然数,且x<5}。
3. 空集:不包含任何元素的集合被称为空集,用符号∅表示。
二、集合的运算1. 并集:若A和B是两个集合,它们的并集是由两个集合中的所有元素组成的集合,用符号∪表示,即A∪B。
2. 交集:若A和B是两个集合,它们的交集是同时属于A和B的元素组成的集合,用符号∩表示,即A∩B。
3. 差集:若A和B是两个集合,它们的差集是属于A而不属于B的元素组成的集合,用符号A-B表示。
4. 互斥:若A∩B=∅,即A和B的交集为空集,称A和B是互斥的。
三、集合的性质1. 子集:若集合A中的所有元素都属于集合B,则称A是B的子集,用符号A⊆B表示。
2. 包含关系:若A是B的子集,且B不等于A,则称B包含A,用符号B⊇A表示。
3. 相等关系:当A⊆B且B⊆A时,称A和B相等,用符号A=B表示。
4. 幂集:集合A的所有子集构成的集合被称为A的幂集,用符号P(A)表示。
5. 交换律:并集和交集满足交换律,即A∪B=B∪A,A∩B=B∩A。
6. 结合律:并集和交集满足结合律,即(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
7. 分配律:并集和交集满足分配律,即A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。
四、常用集合1. 自然数集:包括0、1、2、3......的集合,用符号N表示。
2. 整数集:包括负整数、0、正整数的集合,用符号Z表示。
集合的基本概念集合是数学中一个基本的概念,它是由一些确定的元素组成的整体。
在集合理论中,元素是构成集合的最基本单位,而集合由元素组成。
本文将介绍集合的基本概念以及相关的一些术语和符号。
一、集合的定义与表示在数学中,集合是由一些确定的对象(即元素)组成的整体。
集合是一个无序的集合,其中的元素不重复。
数学中通常用大写字母A、B、C等来表示集合,而元素则用小写字母a、b、c等来表示。
集合可以通过列举元素的形式进行表示,例如集合A={1, 2, 3}表示了一个包含元素1、2、3的集合A。
另外,我们还可以通过描述集合的特征来表示集合,例如集合B={x | x是自然数,且x<5}表示了一个包含小于5的自然数的集合B。
二、集合的基本性质1. 空集:不包含任何元素的集合称为空集,通常用符号∅来表示。
空集是任何集合的子集。
2. 子集与真子集:对于两个集合A和B,如果A中的每一个元素都属于B,那么我们称A是B的子集,记作A⊆B。
如果存在至少一个元素属于A但不属于B,那么我们称A是B的真子集,记作A⊂B。
3. 相等集:如果两个集合A和B中的元素完全相同,那么我们称A 与B相等,记作A=B。
4. 交集、并集与补集:对于两个集合A和B,交集表示包含属于A 且属于B的所有元素的新集合,记作A∩B。
并集表示包含属于A或属于B的所有元素的新集合,记作A∪B。
A关于某个全集的补集表示全集中不属于A的元素组成的集合,记作A'。
三、集合的运算法则集合的运算法则是用来描述集合之间的关系和运算规则的。
1. 结合律:对于任意三个集合A、B、C,交换交集和并集运算的顺序不改变结果,即(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)。
2. 分配律:对于任意三个集合A、B、C,交集和并集运算满足分配律,即A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。
3. 德·摩根定律:对于任意两个集合A和B,补集运算满足德·摩根定律,即(A∪B)'=A'∩B',(A∩B)'=A'∪B'。
集合的全部知识点总结集合是数学中的一个基本概念,广泛应用于各个领域。
本文将对集合的相关概念、运算、性质以及其在实际中的应用进行总结。
一、集合的基本概念1. 集合的定义:集合是由确定的元素组成的整体,没有重复元素,顺序不重要。
2. 元素和集合的关系:元素是集合的组成部分,用于描述集合的特征。
3. 表示方法:- 列举法:将集合的所有元素逐个列举出来。
- 描述法:通过一定的特征或条件来描述集合。
4. 空集和全集:- 空集:不含有任何元素的集合,用符号∅表示。
- 全集:包含所有元素的集合,用符号U表示。
二、集合的运算1. 交集:两个集合中具有相同元素的部分构成的新集合,用符号∩表示。
2. 并集:两个集合的所有元素组成的新集合,用符号∪表示。
3. 差集:一个集合中去掉与另一个集合共有元素后的新集合,用符号-表示。
4. 互补集:在全集中与某个集合没有交集的元素所构成的新集合,用符号A'表示。
5. 笛卡尔积:由两个集合的所有有序对构成的集合,用符号×表示。
三、集合的性质1. 包含关系:集合A包含于集合B,表示为A⊆B,当且仅当A的每个元素都是B的元素。
2. 相等关系:如果两个集合A和B互相包含,即A⊆B且B⊆A,则称A和B相等,表示为A=B。
3. 幂集:一个集合的所有子集所构成的集合,用符号P(A)表示。
4. 交换律、结合律和分配律:集合的交换律、结合律与数的运算性质类似,具有相似的性质。
四、集合的应用1. 概率论与统计学:集合论为概率论和统计学提供了重要的数学基础,通过对事件的集合进行分析与运算。
2. 数据库管理系统:集合运算在数据库查询和数据处理中起着重要的作用,用于筛选、合并和处理数据。
3. 逻辑学与集合论关系:集合论与逻辑学相辅相成,通过集合的运算和逻辑连接词(与、或、非)进行逻辑推理。
4. 集合在数学证明中的应用:集合的性质和运算方式在数学证明中经常被使用,可以简化证明过程。
总结:集合是数学中不可或缺的重要概念,它具有基本的定义、运算和性质。
集合与运算的基本概念与性质一、集合的基本概念1.集合的定义:集合是由一些确定的、互不相同的对象构成的整体。
2.集合的表示方法:用大括号{}括起来,里面列出集合中的元素,如集合A={1,2,3}。
3.集合的元素:集合中的每一个对象称为集合的元素。
4.空集:不含有任何元素的集合,用符号∅表示。
5.集合的性质:a.确定性:集合中的元素是确定的,不存在模糊不清的情况。
b.互异性:集合中的元素是互不相同的。
c.无序性:集合中的元素排列顺序不影响集合的本质。
二、集合的运算1.并集:两个集合A和B的并集,记作A∪B,包含所有属于A或属于B的元素。
2.交集:两个集合A和B的交集,记作A∩B,包含所有同时属于A和属于B的元素。
3.补集:对于全集U,集合A的补集,记作A’,包含所有不属于A的元素。
4.运算法则:a.交换律:A∪B=B∪A,A∩B=B∩Ab.结合律:(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)c.分配律:A(B∪C)=(AB)∪(AC),A(B∩C)=(AB)∩(AC)三、集合的其他概念1.子集:如果集合A的所有元素都是集合B的元素,那么集合A是集合B的子集,记作A⊆B。
2.超集:如果集合A包含集合B的所有元素,那么集合A是集合B的超集,记作A⊇B。
3.真子集:如果集合A是集合B的子集,并且A不等于B,那么A是B的真子集,记作A⊊B。
4.空集的特殊性质:空集是任何集合的子集,也是任何集合的超集。
四、整数的运算1.加法:两个整数相加,得到它们的和。
2.减法:一个整数减去另一个整数,得到它们的差。
3.乘法:两个整数相乘,得到它们的积。
4.除法:一个整数除以另一个整数(不为0),得到它们的商。
5.幂运算:一个整数的n次幂,表示这个整数连乘n次。
五、实数的运算1.加法:两个实数相加,得到它们的和。
2.减法:一个实数减去另一个实数,得到它们的差。
3.乘法:两个实数相乘,得到它们的积。
4.除法:一个实数除以另一个实数(不为0),得到它们的商。
集合的基本概念集合是数学中基础而重要的概念之一。
它被广泛应用于各个数学分支和其他科学领域。
本文将介绍集合的基本概念、符号表示法以及一些常见的集合运算。
1. 集合的定义在数学中,集合可以被定义为由确定的对象所构成的整体。
这些对象可以是任何事物,如数、字母、图形等。
一个集合可以包含零个或多个对象,而且每个对象在集合中只能出现一次。
2. 集合的符号表示法数学中,集合通常用大写字母表示,例如A、B、C等。
对于属于集合的对象,可以用小写字母表示,例如a、b、c等。
表示一个对象属于某个集合,可以使用符号“∈”。
例如,如果a属于集合A,我们可以写作a ∈ A。
相反地,如果一个对象不属于某个集合,可以使用符号“∉”。
例如,如果b不属于集合A,我们可以写作b ∉ A。
3. 集合的描述方法有时,我们需要对集合中的对象进行描述。
有两种常见方法可以描述集合:a. 列举法:通过列举集合中的所有对象来描述集合。
例如,如果集合A包含元素1、2和3,我们可以写作A = {1, 2, 3}。
b. 描述法:通过给出满足某个条件的对象来描述集合。
例如,如果集合B包含所有大于0的整数,我们可以写作B = {x | x > 0},其中“|”表示“满足条件”。
4. 集合的基本运算集合之间可以进行一些常见的运算,包括并集、交集、差集和补集。
a. 并集:两个集合A和B的并集,表示为A ∪ B,包含了A和B中所有的元素。
例如,如果A = {1, 2, 3},B = {3, 4, 5},则A ∪ B = {1, 2, 3, 4, 5}。
b. 交集:两个集合A和B的交集,表示为A ∩ B,包含了A和B共有的元素。
例如,如果A = {1, 2, 3},B = {3, 4, 5},则A ∩ B = {3}。
c. 差集:两个集合A和B的差集,表示为A - B,包含了属于A但不属于B的元素。
例如,如果A = {1, 2, 3},B = {3, 4, 5},则A - B= {1, 2}。
集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。
理解集合的基本概念和运算方法对于解决各种数学问题至关重要。
本文将介绍集合的基本概念以及常用的运算方法。
一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。
例如,集合A可以表示为:A = {1, 2, 3, 4}。
2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。
例如,集合A中的元素1、2、3、4便是集合A的元素。
3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。
用符号表示为A ⊆ B。
例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。
4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。
用符号表示为A = B。
二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。
用符号表示为A ∪ B。
例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。
2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。
用符号表示为A ∩ B。
例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。
3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。
用符号表示为A'。
例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。
4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。
用符号表示为A - B。
例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。
5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。
三年级数学集合知识要点
集合是数学中的一个基本概念,表示一组对象的总和。
在三年级数学中,集合的知识要点包括以下几个方面:
1. 集合的基本概念:集合是由一组具有共同特征的物体或数字组成的整体。
集合中的每个物体或数字称为元素。
2. 元素与集合的关系:一个元素可以属于一个集合,也可以不属于一个集合。
属于关系用“∈”表示,不属于关系用“∉”表示。
3. 集合的确定性:集合中的元素必须是确定的,不能模棱两可。
4. 集合的互异性:集合中的元素是互异的,即集合中的元素没有重复现象。
5. 集合的无序性:集合中的元素不讲顺序,即元素完全相同的两个集合,不论元素顺序如何,都表示同一个集合。
6. 集合的表示方法:可以用大括号、小括号、逗号等符号来表示集合,如{1,2,3}、(1,2,3)、1,2,3等。
7. 子集的概念:如果一个集合中的每一个元素都属于另一个集合,那么这个集合就称为另一个集合的子集。
8. 空集的概念:不含任何元素的集合称为空集。
空集是所有集合的子集。
9. 集合的运算:包括并集、交集、差集等基本运算。
并集表示两个集合中的所有元素,交集表示同时属于两个集合的元素,差集表示属于第一个集合但不属于第二个集合的元素。
通过掌握以上知识要点,学生可以更好地理解集合的概念和性质,为后续学习打下基础。
集合的基本概念(1) 集合:把某些特定的对象集在一起就叫做集合.集合的特征:互异性,确定性,无序性(2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x 具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集∅.例题:集合间的基本关系例题:集合的基本运算1. 并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )。
记作:A ∪B ,读作:“A 并B ”。
即: {|}A B x x A x B =∈∈或2. 交集:一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。
记作:A ∩B ,读作:“A 交B ”。
即: {|,}A B x x A x B =∈∈且3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集,记作:U A ð即:{|,}U A x x U x B =∈∉且ð4. 集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A()()AB C A B C A B C ==,()()()A B C A C B C = ()()A B C A B C A B C ==,()()()A B C A C B C = (U A ð)∪A=U ,(U A ð)∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B例题:【例1】 设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð. 总结:利用数轴来找到集合的关系。