第4讲 三角函数的图象与性质(假期精品辅导资料)
- 格式:doc
- 大小:301.81 KB
- 文档页数:5
《三角函数的图象与性质》讲义一、引言三角函数是数学中的重要概念,其图象和性质在数学、物理、工程等领域都有广泛的应用。
掌握三角函数的图象与性质,对于理解和解决相关问题具有关键意义。
二、三角函数的定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦(sin):对边与斜边的比值。
余弦(cos):邻边与斜边的比值。
正切(tan):对边与邻边的比值。
用角度θ表示,即:sinθ =对边/斜边cosθ =邻边/斜边tanθ =对边/邻边三、常见的三角函数1、正弦函数:y = sin x定义域:R(全体实数)值域:-1, 1周期性:周期为2π,即 sin(x +2π) = sin x奇偶性:奇函数,即 sin(x) = sin x图象特点:图象是一条波浪线,在 x =kπ +π/2 (k∈Z)处取得最大值 1,在 x =kπ π/2 (k∈Z)处取得最小值-1。
2、余弦函数:y = cos x定义域:R值域:-1, 1周期性:周期为2π,即 cos(x +2π) = cos x奇偶性:偶函数,即 cos(x) = cos x图象特点:图象也是一条波浪线,在 x =kπ(k∈Z)处取得最大值 1,在 x =kπ +π(k∈Z)处取得最小值-1。
3、正切函数:y = tan x定义域:{x |x ≠ kπ +π/2,k∈Z}值域:R周期性:周期为π,即 tan(x +π) = tan x奇偶性:奇函数,即 tan(x) = tan x图象特点:图象是由一系列不连续的曲线组成,在每个周期内,在x =kπ +π/2 (k∈Z)处有垂直渐近线。
四、三角函数图象的变换1、平移变换对于正弦函数 y = sin(x +φ),当φ > 0 时,图象向左平移φ个单位;当φ < 0 时,图象向右平移|φ|个单位。
对于余弦函数 y = cos(x +φ),规律与正弦函数相同。
2、伸缩变换对于正弦函数 y =A sin(ωx +φ),A 决定了图象的振幅,ω决定了图象的周期。
第四讲三角函数图像和性质[玩前必备]1.正弦函数、余弦函数、正切函数的图象与性质π2.用“五点法”作图,就是令ωx +φ取下列5个特殊值:0, π2, π, 3π2, 2π,通过列表,计算五点的坐标,描点得到图象.3.三角函数图象变换4[常用结论](1)对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. (2)与三角函数的奇偶性相关的结论若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z );若为奇函数,则有φ=k π(k ∈Z ).若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z );若为奇函数,则有φ=k π+π2(k ∈Z ).若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ).[玩转典例]题型一 三角函数的5大性质例1 (安老师原创)已知函数f (x )=2cos x ·sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x +1. (1)求函数f (x )的最小正周期;(2)当x ∈⎝⎛⎭⎫0,π2时,求函数f (x )的最大值及最小值; (3)写出函数f (x )的单调递增区间. (4)写出函数f (x )的对称轴和对称中心.(5)函数f (x )向右平移t 个单位为偶函数,求t 的最小正值。
[玩转跟踪]1.(2020·山东高三下学期开学)函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π2.(2020届山东省济宁市高三3月月考)已知函数()()()2sin 20f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位长度后,所得图象关于y 轴对称,则下列结论中正确的是( ) A .56πϕ= B .,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心 C .()2fϕ=-D .6x π=-是()f x 图象的一条对称轴3.(2019·呼和浩特开来中学)已知函数21()2cos 2f x x x =-+. (1)求2()3f π的值及f (x )的对称轴; (2)将()f x 的图象向左平移6π个单位得到函数()g x 的图象,求()g x 的单调递增区间.题型二 三角函数模型中“ω”范围的求法探究例2 (2020·洛阳尖子生第二次联考)已知函数 f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增,则ω的取值范围为( ) A.⎝⎛⎦⎤0,83 B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,83D.⎣⎡⎦⎤38,2例3 已知函数f (x )=cos ⎝⎛⎭⎫ωx +π3(ω>0)的一条对称轴x =π3,一个对称中心为点⎝⎛⎭⎫π12,0,则ω有( )A .最小值2B .最大值2C .最小值1D .最大值1例4 已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是________. [玩转跟踪]1.(2020·湖南师大附中3月月考)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎣⎡⎦⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B .16C.14D.132.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0),若f (x )在区间⎣⎡⎦⎤0,π2上是单调函数,且f (-π)=f (0)=-f ⎝⎛⎭⎫π2,则ω的值为( ) A.23 B .23或2C.13D .1或133.设函数f (x )=cos ⎝⎛⎭⎫ωx -π6(ω>0).若f (x )≤f ⎝⎛⎭⎫π4对任意的实数x 都成立,则 ω的最小值为________. 题型三 三角函数的图像和图像变换 例5 (2017山东)设函数,其中.已知.(Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.[玩转跟踪]1.(2014·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( ) ()sin()sin()62f x x x ππωω=-+-03ω<<()06f π=ω()y f x =4π()y g x =()g x 3[,]44ππ-A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增 C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 2.【2017课标1,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.(2020届山东省济宁市第一中学高三二轮检测)将函数()213f x x π⎛⎫=+- ⎪⎝⎭的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则下列关于函数()g x 的说法正确的是( ) A 12x π=对称 B .图象关于y 轴对称 C .最小正周期为π D .图象关于点,04π⎛⎫⎪⎝⎭对称 题型四 由图象求y =A sin(ωx +φ)的解析式例6 (1)若函数y =A sin(ωx +φ)的部分图象如图所示,则y = .(2)已知函数f (x )=sin(ωx +φ) ⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝⎛⎭⎫x +π6取得最小值时x 的集合为 .[玩转跟踪]1.(四川,6)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2 的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3 B .2,-π6 C .4,-π6D .4,π32.(2020·石家庄质检)已知函数f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数f (x )的图象向左平移m (m >0)个单位长度后,得到函数g (x )的图象关于点⎝⎛⎭⎫π3,32对称,则m 的值可能为( )A.π6B.π2 C.7π6D.7π12题型五 三角函数大题例7 已知函数f (x )=23sin ⎝⎛⎭⎫x 2+π4·cos ⎝⎛⎭⎫x 2+π4-sin(x +π). (1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.[玩转跟踪]1.(2020届山东省泰安市肥城市一模)已知函数4()cos f x x =-42sin cos sin x x x -(1)求()f x 的单调递增区间;(2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值及取最小值时的x 的集合.2.(山东,18)设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值;(2)求f (x )在区间[π,3π2]上的最大值和最小值.[玩转练习]1.(2020·永州模拟)函数y =2cos ⎝⎛⎭⎫2x +π6的部分图象大致是( )2.(2020·河南中原名校联盟联考)已知函数f (x )=4sin(ωx +φ)(ω>0).在同一周期内,当x =π6时取最大值,当x =-π3时取最小值,则φ的值可能为( )A.π12 B.π3 C.13π6D.7π63.将曲线y =sin(2x +φ)⎝⎛⎭⎫|φ|<π2向右平移π6个单位长度后得到曲线y =f (x ),若函数f (x )的图象关于y 轴对称,则φ=( ) A.π3 B .π6C .-π3D .-π64.(2020·郑州市第一次质量预测)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x -2π3,则下列结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移7π12个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移7π12个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π6个单位长度,得到曲线C 25.(多选)已知函数f (x )=A sin ωx (A >0,ω>0)与g (x )=A2cos ωx 的部分图象如图所示,则( )A .A =1B .A =2C .ω=π3D .ω=3π6.(多选)函数f (x )=2sin ⎝⎛⎭⎫2x -π3的图象为C ,如下结论正确的是( ) A .f (x )的最小正周期为πB .对任意的x ∈R ,都有f ⎝⎛⎭⎫x +π6+f ⎝⎛⎭⎫π6-x =0 C .f (x )在⎝⎛⎭⎫-π12,5π12上是减函数 D .由y =2sin 2x 的图象向右平移π3个单位长度可以得到图象C7.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是____________.8.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π2,则f ⎝⎛⎭⎫π6的值是________. 9.(2020·安徽合肥一中等六校教育研究会联考)将函数y =cos x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=________. 10.(一题两空)已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2一部分图象如图所示,则ω=________,函数f (x )的单调递增区间为________.11.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝⎛⎭⎫π3,5.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.12.设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3,且f ⎝⎛⎭⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.。
第4讲 三角函数的图象与性质
一、【要点回顾】
1.正弦函数、余弦函数、正切函数的图像
1-1y=sinx
-3π2
-5π2
-7π2
7π2
5π
2
3π2
π2
-π2
-4π-3π
-2π4π
3π
2ππ
-π
o
y x
1-1y=cosx
-3π
2
-5π2
-7π
2
7π2
5π2
3π2
π2
-π2
-4π-3π-2π4π
3π
2π
π
-π
o
y
x
y=tanx
3π2
π
π2
-
3π2
-π
-
π2
o
y
x y=cotx
3π2
π
π2
2π
-π
-
π2
o
y
x
2.三角函数的单调区间:
x y sin =的递增区间是_________ ,递减区间是_________;
x y cos =的递增区间是_______ 递减区间是_______ x y tan =的递增区间是_______
3.函数B x A y ++=)sin(ϕω),(其中00>>ωA
最大值是_______,最小值是_______,周期是_______,频率是_______,相位是_______,初相是_______;其图象的对称轴是直线_______,凡是该图象与直线B y =的交点都是该图象的对称中心
4.由sinx y =的图象变换出)sin(ϕω+=x y 的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
途径一:先平移变换再周期变换(伸缩变换):
途径二:先周期变换(伸缩变换)再平移变: 5.由)sin(ϕω+=x A y 的图象求其函数式:
给出图象确定解析式)sin(ϕω+=x A y 的题型,有时从寻找“五点”中的
第一零点(-ωϕ
,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
6.对称轴与对称中心:
sin y x =的对称轴为_______,对称中心为_______; cos y x =的对称轴为_______,对称中心为_______; 二、【典例解析】
题型1:三角函数图象的变换 1.为得到函数πcos 23y x ⎛⎫
=+ ⎪⎝
⎭
的图像,只需将函数sin 2y x =的图像 A .向左平移
5π
12个长度单位 B .向右平移
5π
12个长度单位 C .向左平移5π
6个长度单位
D .向右平移5π
6
个长度单位
错误!未找到引用源。
函数)0,0)(cos()(>>+=ωϕωA x A x f 的部分图象
如图所示,则
+++)3()2()1(f f f )2009(f + 的值为
A .2
B .22-
C .7
D .0
3.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3
π
个单位长度,再把所得图象上所有点的横坐标缩短到原来的1
2
倍(纵坐标不变),得到的图象所表示的函数是
A sin(2)3y x π
=-
,x R ∈ B sin()26x y π
=+,x R ∈ C sin(2)3y x π=+,x R ∈ D sin(2)3
2y x π
=+,x R ∈
4.为得到函数πcos 23y x ⎛
⎫
=+ ⎪⎝
⎭
的图像,只需将函数sin 2y x =的图像( ) A .向左平移
5π
12个长度单位
B .向右平移
5π
12个长度单位 C .向左平移5π
6
个长度单位
D .向右平移5π
6
个长度单位
5.函数πsin 23y x ⎛⎫=-
⎪⎝
⎭在区间ππ2⎡⎤-⎢⎥⎣⎦
,的简图是( )
6.下面有五个命题:
①函数x x y 4
4
cos sin -=的最小正周期是π. ②终边在y 轴上的角的集合是⎭
⎬⎫⎩⎨⎧∈=
Z k k a a ,2π
. ③在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点. ④把函数)3
2sin(3π
+=x y 的图像向右平移
6
π
得到x y 2sin 2=的图像。
⑤函数)2
s i n (π
-=x y 在],0[π上是减函数。
其中真命题的序号是
7.要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 A 向左平移1个单位 B 向右平移1个单位
C 向左平移 12个单位
D 向右平移1
2
个单位 8.试述如何由)3
2sin(31y π
+=x 的图象得到x y sin =的图象
9.将函数sin 2y x =的图象向左平移4
π
个单位, 再向上平移1个单位,所得图象的函数解析式是( ).
A.cos 2y x =
B.2
2cos y x = C.)4
2sin(1π
++=x y D.22sin y x =
10.将函数sin 2y x =的图象向左平移4
π
个单位, 再向上平移1个单位,所得图象的函数解析式是( ).
A. 2
2cos y x = B. 2
2sin y x = C.)4
2sin(1π
+
+=x y cos2y x =
题型2:三角函数图象的应用
1.已知函数2
π()sin 3sin sin 2f x x x x ωωω⎛⎫
=++
⎪⎝
⎭
(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦
,上的取值范围.
2.已知函数()cos(2)2sin()sin()344
f x x x x π
ππ
=-
+-+
(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122
ππ
-上的值域
3.已知函数)0,0)(cos()sin(3)(><<+-+=
ωϕϕωϕωπx x x f 为偶函
数,且函数)(x f y =图象的两相邻对称轴间的距离为.2
π
(Ⅰ)求)8
(π
f 的值;
(Ⅱ)将函数)(x f y =的图象向右平移
6
π
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g y =的单调递减区间.
4.已知函数,,cos 2cos sin 3sin )(2
2
R x x x x x x f ∈++= (1)求函数)(x f 的最小正周期和单调增区间;
(2)函数)(x f 的图象可以由函数)(2sin R x x y ∈=的图象经过怎样的变换得到?。