新人教版九年级数学上册导学稿正多边形和圆
- 格式:doc
- 大小:439.50 KB
- 文档页数:2
24. 3正多边形和知识与技能:1、了解正多边形和圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。
2、能运用正多边形的知识解决圆的有关计算问题。
过程与方法:1、在探索正多边形与圆的关系的过程屮,学生体会化归思想在解决问题屮的重要性。
2、发展学生的观察、比较、分析、概括及归纳的逻辑思维能力情感态度价值观:经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。
重点探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。
难点探索正多边形与圆的关系。
教学过程一、自主探究1、创设情境,导入新课:观察下列美丽图案(课本图24. 3—1)回答问题:(1)这些美丽的图案,都是在日常生活中我们经常看到的得用正多边形得到的物体,你能从这些图案中找出正多边形来吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?2、自主探究问题1:将一个圆分成五等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论。
问题2:如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?认识正n边形归纳总结一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的一边的距离叫做正多边形的边心距.3、尝试应用1.课本例题,有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(精D确到0. Im)二、操作能力提升怎样画一个正多边形呢?问题1:已知00的半径为2cm,求作圆的内接正三角形.你能用以上方法画出正四边形、正五边形、正六边形吗?你能尺规作出正四边形、正八边形吗?你能尺规作出正六边形、正三角形、正十二边形吗?说说作正多边形的方法有哪些?四、补偿提高1、正方形ABCD的外接圆圆心0叫做正方形ABCD的 _____ ・2、正方形ABCD的内切圆00的半径0E叫做正方形ABCD的3、若正六边形的边长为1,那么正六边形的中心角是_________ 度,半径是______ ,边心距是______ ,它的每一个内角是______ ・4、正n边形的一个外角度数与它的_______ 角的度数相等.5•正多边形一定是____ 对称图形,一个正n边形共有___________ 条对称轴,每条对称轴都通过______ ;如果一个正n边形是中心对称图形,n 一定是 _________ .6.将一个正五边形绕它的中心旋转,至少要旋转________ 度,才能与原来的图形位置重合.7. _______________________________________________________________________ 两个正三角形的内切圆的半径分别为12和1&则它们的周长之比为 ______________________ 面积之比为________ .五,今天我学到了。
人教版数学九年级上册24.3.1《正多边形和圆》说课稿一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第3节的内容。
本节课主要介绍正多边形的定义、性质以及与圆的关系。
通过学习,使学生能够理解正多边形的概念,掌握正多边形的性质,并能够运用这些性质解决实际问题。
教材通过丰富的图片和实例,引发学生的兴趣,引导学生探究正多边形与圆的内在联系,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。
但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从已有的知识出发,探究新知识,激发学生的学习兴趣,帮助学生建立知识体系。
三. 说教学目标1.知识与技能:理解正多边形的定义,掌握正多边形的性质,了解正多边形与圆的关系。
2.过程与方法:通过观察、分析、归纳等方法,探究正多边形的性质,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学的美。
四. 说教学重难点1.教学重点:正多边形的定义,正多边形的性质。
2.教学难点:正多边形与圆的关系,正多边形的性质在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示正多边形的性质和与圆的关系,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示一些生活中的正多边形图片,如足球、骰子等,引导学生关注正多边形,激发学生的学习兴趣。
2.探究正多边形的定义和性质:学生分组讨论,每组找出正多边形的定义和性质,最后进行汇报和交流。
3.揭示正多边形与圆的关系:引导学生观察正多边形的特点,引导学生发现正多边形可以看作圆的内接多边形,从而得出正多边形与圆的关系。
新人教版九年级数学上册导学案:24.3正多边形和圆(1) 学习目标1、认识正多边形半径和边长、边心距、中心角,并弄明白它们之间的关系2、会圆内接正多边形的两种画法:(1)用量角器等分圆周法作正多边形;(2)用尺规作图法作特殊的正多边形预习导学一知识链接:1.正多边形和圆的关系:只要把一个圆分成的一些弧,就可以作出这个圆的,这个圆就是这个正多边形的.2. 正多边形的性质:正n边形的每一个内角都等于,中心角等于,外角等于,正多边形的中心角与外角. 3.正多边形的计算中常用的结论是:(1)正多边形的中心角等于;(2)正多边形的半径、边心距、边长的一半构成三角形;(3)正n边形的半径和边心距,把正n边形分为2n个直角三角形.二、探究新知:思考:如何利用等分圆弧的方法来作正n边形?方法一、任何正n边形的作法:用量角器作一个等于的圆心角,再等分圆;方法二、特殊正多边形的作法:正六边形和正方形等的尺规作法.(在此基础上,还可以进一步作出正三角形、正八边形、正十二边形)活动2:正多边形都是轴对称图形吗?如果是,有多少条对称轴?正多边形都是中心对称图形吗?如果是,它的对称中心在哪里?归纳:正边形是轴对称图形,正边形是中心对称图形学以致用1.正五边形共有__________条对称轴,正六边形共有__________条对称轴.2.周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是( ) 【温馨提示】1、结合上节引入本节知识2、自主探究, 正多边形半径和边长、边心距、中心角之间的关系联系生活实际。
.3、研究正多边形和圆关系并初步学会运用这些关系进行有关的计算.4、动手、探索、画图圆内接正多边形的两种画法A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S33.若一个正多边的每个内角的度数是中心角的3倍,则正多边行的边数是()A.4B.6C.8D.104.在右图中,用尺规作图画出圆O的内接正三角形.:5、请在下图的图(1)中画出⊙O的内接正四边形;在图(2)中画出⊙O的内接正五边形;图(3)中画出⊙O的内接正六边形.6 ..用等分圆周的方法画出下列图案:巩固提升1.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化2.已知正六边形的半径为3 cm,则这个正六边形的周长为__________ cm.3.若一个正多边的每个内角的度数是中心角的3倍,则正多边行的边数()A.4B.6C.8D.104.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.OO图(1)图(2)图(3)OO【课后反思】。
2019-2020学年九年级数学上册《2.4.3正多边形和圆》说课稿新人教版-尊敬的各位评委老师,亲爱的同学们,大家好!我是孟书宇。
我今天说课的课题是《正多边形和圆》选自人民教育出版社九年级上册第二十四章第三节。
我说课的流程主要分为五大步:一、教材分析二、学情分析三、教法学法四、教学过程五、板书设计首先,教材分析1、教材的地位与作用本节课是在学生学习了正多边形和圆的概念,以及圆的性质的基础上,让学生主动参与探索正多边形和圆的关系,在解决实际问题的过程中体会数形结合的思想。
2、教学的重点与难点本着课程标准,在吃透教材的基础上,我确立如下重点、难点重点:探索正多边形和圆的关系,正多边形的概念,并能进行有关计算难点:对正多边形和圆的关系的探索3、教学目标培养学生合作探究精神、自主学习、创新精神是新课程标准的重要理念,我根据学生的认知基础,结合教学内容,确定本节课的教学目标如下:知识技能目标:了解正多边形和圆的关系,正多边形的中心、半径、中心角、边心距等概念,并会解决简单的实际问题。
情感态度目标:通过本节知识的学习,使学生体验数学与生活的紧密相连,感受数学的应用价值,激发学生的学习兴趣。
过程方法目标:在学习的过程中,通过学生的观察、比较、分析、概括以及归纳等方法发现问题、解决问题,发展学生的合情推理能力和逻辑推理能力。
二、学情分析数学教学活动必须建立在学生认知发展水平和已有知识经验基础上,第三学段学生正处于思维能力培养和形成正确的人生观、世界观的重要时期,他们感受新事物的能力很强、思维活跃、富于创造力。
但受年龄等因素的影响,注意力不持久,对抽象的数学问题缺乏兴趣,这就需要教师创设生动有趣的问题情景激起学生的探究欲望。
及时发现学生在学习中的不同进步,正确评价,充分发挥评价的激励性,帮助学生树立信心,提高学习兴趣。
三、教法与学法首先,说教法本节课结合第三学段学生的理解能力、思维特征,我采用多媒体辅助教学,将知识形象化、生动化、具体化。
正多边形和圆说课稿尊敬的各位评委、各位老师:大家好!我是号选手.我说课的内容是人教版数学教材九年级上册第二十四章第三节:正多边形和圆(板书)。
根据教材编排,本节课分两课时完成。
在此,我说第一课时。
下面,我将从教材分析、教法和学法、教学过程、板书设计四个方面对本课时的设计进行说明。
首先来说教材分析.教材所处的地位和作用正多边形是和圆是在学生学习了三角形、四边形、多边形以及圆的相关知识后的内容,是前一阶段知识的运用和提高。
正多边形是一种特殊的多边形,它有一些类似于圆的特性;研究正多边形和圆的关系,掌握有关正多边形的计算是进一步学习数学及其它学科的重要基础。
根据新课标要求,结合教材特点,我把教学目标定为以下三个方面。
知识与技能让学生经历正多边形的形成过程;理解正多边形的有关概念及正多边形和圆的关系;掌握正多边形的有关计算方法。
过程与方法通过正多边形定义的教学,培养学生的归纳能力;通过正多边形与圆的关系教学,培养学生观察、猜想、推理、迁移能力,以及从具体到抽象,从特殊到一般,从部分到整体的认识事物规律的能力.情感态度与价值观通过“寻找生活中的正多边形”等活动,使学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,培养学生细心观察生活的习惯,使学生了解数学对促进社会进步和发展人类理性精神的作用.同时,向学生渗透“特殊到一般”再“一般到特殊”的唯物辩证法思想.再来看教学重点和难点本节课的教学重点是:了解正多边形的有关概念;理解正多边形和圆的关系;掌握有关正多边形的计算方法。
难点是:对正多边形和圆的关系的理解及正多边形相关概念计算的准确性.教法学法按照新的课程理论和九年级学生的特点,我确定如下教法学法:教法:本节课我采用发现式教学法,让学生经历正多边形的定义以及正多边形和圆的关系的探索过程,并积极为学生创设再发现的机会和条件,在探索发现过程中培养学生的思维能力和创新精神的培养。
学法:采用自主探索、合作交流的学习方法,并在此过程中培养学生动脑、动口的能力,发展学生的形象思维。
新人教版九年级数学上册导学稿正多边形和圆
学习目标1、了解正多边形和圆的有关概念;
2、理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.(重点、难点)
学生自主活动材料
一.前置自学
1.自学内容;课本P104-P107。
2.自学检测:
(1)_____________________________________________叫做这个多边形的中心.
(2)_____________________________________________叫做正多边形的半径.
(3)_____________________________________________叫做正多边形的中心角.
(4)_____________________________________________叫做正多边形的边心距.
(5)正n边形的一个内角的度数是:_____________,一个外角的度数是__________,一个中心角的度数是:_________________。
(6)分别画出下列图形的半径、边心距、中心角。
并求出每个多边形的内角、外角、中心角的度数。
(7)已知圆O的半径是6cm,分别求出圆O的内接正三角形、正方形的边长、边心距和面积。
二.合作探究
1、问题:图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中心对称图形,找出它的对称中心。
思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?
三..拓展提升
1、若一个正多边形的一个外角大于它的一个内角,则它的边数是( )
A.3
B.4
C.5
D.不能确定
2、同圆的内接正四边形与外切正四边形的面积之比是( )
A.1:
B.1:
C.1:2
D.:1
3.正六边形的两条平行边间距离是1,则边长是( )
A. B. C. D.
4、面积等于cm2的正六边形的周长是____.
5、同圆的内接正三角形与外切正三角形的边长之比是____.
6、正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.
7、正六边形的两对边之间的距离是12cm,则边长是____cm.
8、已知圆内接正三角形边心距为2cm,求它的边长.
四.当堂反馈
1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60°B.45°C.30°D.22.5°
2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().
A.36°B.60°C.72°D.108°
3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18°B.36°C.72°D.144°
4.已知正六边形边长为a,则它的外接圆面积为_______.
5.四边形ABCD为⊙O的内接梯形,如图2所示,AB∥CD,且CD为直径,•如果⊙O的
半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;
∠BOC的度数是________.
6.如图所示,•已知⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF
的面积.
教学反思图1 图2。