矩阵论重点—武汉理工大学2016年《矩阵论》复习重点
- 格式:pdf
- 大小:302.58 KB
- 文档页数:3
矩阵论基础知识总结一、引言矩阵论是线性代数的重要分支,广泛应用于数学、物理、工程等领域。
本文将介绍矩阵的基本概念、运算规则、特殊类型矩阵以及矩阵的应用。
二、矩阵的基本概念1. 定义:矩阵是由m行n列的数按照一定的顺序排列而成的矩形数表,常用大写字母表示,如A、B。
2. 元素:矩阵的每个数称为元素,用小写字母表示,如a、b。
一个矩阵的第i行第j列的元素可以表示为a_ij。
3. 阶数:矩阵的行数和列数分别称为矩阵的行数和列数,记作m×n,其中m表示行数,n表示列数。
4. 主对角线:从左上角到右下角的对角线称为主对角线。
三、矩阵的运算规则1. 矩阵的加法:两个相同阶数的矩阵相加,即对应元素相加。
2. 矩阵的数乘:一个矩阵的每个元素都乘以同一个数。
3. 矩阵的乘法:若矩阵A的列数等于矩阵B的行数,则矩阵A与矩阵B的乘积C为一个新的矩阵,其中C的行数等于A的行数,列数等于B的列数。
四、特殊类型矩阵1. 零矩阵:所有元素都为0的矩阵,用0表示。
零矩阵与任何矩阵相加等于其本身。
2. 对角矩阵:主对角线以外的元素都为0的矩阵。
对角矩阵的乘法可以简化为主对角线上元素的乘积。
3. 单位矩阵:主对角线上的元素都为1,其余元素为0的对角矩阵。
单位矩阵与任何矩阵相乘等于其本身。
4. 转置矩阵:将矩阵的行和列互换得到的新矩阵。
5. 逆矩阵:对于方阵A,若存在一个方阵B,使得A与B的乘积等于单位矩阵,则称B为A的逆矩阵。
五、矩阵的应用1. 线性方程组:矩阵可以用于求解线性方程组,通过矩阵的运算可以将线性方程组转化为矩阵方程,从而求解未知数的值。
2. 向量空间:矩阵可以表示向量空间中的线性变换,通过矩阵的乘法可以实现向量的旋转、缩放等操作。
3. 数据处理:矩阵可以用于数据的存储和处理,通过矩阵运算可以实现数据的加工、筛选、聚合等操作。
4. 图像处理:图像可以表示为像素矩阵,通过矩阵运算可以实现图像的平移、旋转、缩放等操作。
1矩阵的基本知识正规矩阵:实对称阵,实反对称阵,实正交矩阵,hermite 矩阵,反hermite 矩阵,酉矩阵2.1矩阵的特征值与特征向量2.2矩阵的相似对角化2.3矩阵的Jordan 标准型1、不变因子、初等因子、行列式因子的定义2、Jordan 标准型的求法:初等变换法、行列式因子法3、相似变换矩阵的求法:J=P-1AP→AP=PJ,k i j 的形式、二项式系数4、相似对角化的条件:r 重根需对应r 特征向量,否则不能对角化2.4hamilton-cayley 定理()()()0,det =-=A A I n ϕλλϕ则,用此公式简化矩阵运算2.5矩阵的酉相似1、smit 正交化,shur 分解2、酉矩阵的定义,正规矩阵的定义,酉相似定义,酉相似对角化及充要条件3、酉对角化步骤4、正定hermite 的性质A=GG H3.1矩阵的三个基本分解1、满秩分解:只能是行变换A=FG2、方阵的Jordan 分解、shur 分解3.2矩阵的三角分解1、三角分解的定义及可逆矩阵的三角分解条件,不可逆矩阵也是可以三角分解的2、Doolittle、crout、LDR 分解的形式、正定hermite 矩阵的cholesky 分解3.3矩阵的QR 分解1、householder 变换(1)取记住复数向量的模为sqrt(x hx)αe1Hx 则,2uu 1H 令(3)αe1x αe1x u 取2x α1H=-=--==)()(2、利用householder 变换求矩阵的QR 分解Q=H1H2H3...Hn-13、矩阵奇异值分解的一般步骤4.1向量范数和矩阵范数的定义∑==ni ix x 115.0122⎪⎭⎫ ⎝⎛=∑=ni i x x pni p i px x11⎪⎭⎫⎝⎛=∑=ix xmax =∞∑∑===ni nj ijm a A 111()AA a A H n i n j ij Ftr 5.0112=⎪⎪⎭⎫ ⎝⎛=∑∑==ijm a n A max ⋅=∞∑=≤≤=ni ij nj a A 111max 最大列模和∑=≤≤∞=nj ij ni a A 11max 最大行模和H AA A ==12σA 的最大奇异值谱半径与范数的关系:()AA ≤ρ4.2矩阵级数,矩阵幂级数,收敛性()1-∞=-=∑A I A k k,当级数∑∞=0k kA收敛时即()1<A ρ4.3矩阵函数:几个常用的矩阵函数∑∞==0!k kAk A e ()()120!121sin +∞=∑+-=k k kAk A ()()kk k Ak A 20!21cos ∑∞=-=()()()10111ln +∞=∑+-=+k K kAk A 矩阵函数值的计算方法:1、Hamilton-cayley 定理或零化多项式进行求解2、Jordan 分解:()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P J a P A a A f k k k k kk ()()()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P Jt a P At a At f K k k k kk 3、待定系数法矩阵函数()A f 的特征值对应()i f λ5、矩阵的特征值界的估计∞≤m A λ()∞+≤m HA A 5.0ReλHA A -≤5.0Im λ矩阵特征值的分布区域:圆盘定理,行和列盖尔圆特征值的隔离()~1ii ii R R a z αα-+≤-()x R max 1=λ,()x R n min =λ6、广义逆矩阵P l l l I Q X r ⎥⎦⎤⎢⎣⎡=222112{1}广义逆的求法⎥⎦⎤⎢⎣⎡0nm I I A 初等变换→⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛0000Q P I r。
矩阵论知识要点范文矩阵论(Matrix theory)是线性代数的一门重要分支,研究的是矩阵的性质、运算以及与线性方程组、线性变换等数学对象之间的关系。
矩阵论在多个领域中都有广泛的应用,如物理学、工程学、计算机科学等。
以下是一些矩阵论的重要知识要点:1.矩阵表示:矩阵由行、列组成,可以表示为一个矩形的数表。
矩阵的大小由行数和列数确定,常用的表示方法是用大写字母表示矩阵,如A、B、C等。
2.矩阵运算:矩阵可以进行加法和乘法运算。
矩阵的加法是对应元素相加,矩阵的乘法是按照一定规则进行计算得到一个新的矩阵。
3.矩阵的转置:矩阵的转置是将矩阵按照主对角线进行镜像变换得到的新矩阵。
对于一个m×n的矩阵,转置后得到一个n×m的矩阵。
4.矩阵的逆:对于一个可逆矩阵A,存在一个矩阵B,满足AB=BA=I,其中I为单位矩阵。
矩阵B称为矩阵A的逆矩阵,记作A^(-1)。
逆矩阵的存在与唯一性为解线性方程组提供了便利。
5.矩阵的秩:矩阵的秩是指矩阵中线性无关的行或列的最大个数。
秩是矩阵的一个重要性质,与矩阵的解空间、零空间等直接相关。
6.矩阵的特征值和特征向量:对于一个n阶矩阵A,如果存在一个非零向量x使得Ax=λx,其中λ为一个常数,则称常数λ为矩阵A的特征值,非零向量x称为对应于特征值λ的特征向量。
矩阵的特征值和特征向量可以用来描述线性变换的性质。
7.矩阵的相似性:如果存在一个可逆矩阵P,使得P^(-1)AP=B,则矩阵B与A相似。
相似矩阵具有一些相似的性质,如秩、迹、特征值等。
8.矩阵分解:矩阵分解是将一个复杂的矩阵表示分解为一些简单矩阵的乘积或和的形式,常见的分解方法有LU分解、QR分解、特征值分解等。
9. 矩阵的迹:矩阵的迹是主对角线上各个元素的和,记作tr(A)。
矩阵的迹与矩阵的特征值、秩等有一定的关系。
10.矩阵方程:矩阵方程是形如AX=B的方程,其中A、B为已知矩阵,X为未知矩阵。
矩阵方程的研究可以帮助解决线性方程组、线性变换等相关问题。
第一章1 线性空间概念(封闭性)2线性空间的基与维数 (教材P3例6) 3坐标概念、及求解(教材P3例8) 4 坐标在不同基下的过渡矩阵及坐标变换5 子空间、列空间、和空间概念,维数定理以及求法(例1);直和, 直和补空间6 内积空间概念,标准正交基及标准正交化过程7 线性变换概念、线性变换的矩阵(概念:教材P22定义1.13,性 质:教材P22定理1.13),计算、过渡矩阵以及不同基下的矩阵(例2, 3)8 不变子空间,正交变换,酉交变化例1 设112{,}W L αα=,212{,}W L ββ=,其中T )0121(1=α,T )1111(1-=α,T )1012(1-=β,T )7311(1-=β,求12W W +与12W W ⋂的维数,并求出12W W ⋂解 [][][]2121212121,,,,ββααββααL L L W W =++=+()⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==711022-203-5-30121-17110301111121211,,,2121行变换ββααA B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000310040101-001000031007110121-1得r(A)=r(B)=3,dim(W 1+W 2)=3. 又因为dim W 1=2, dim W 2=2,由维数定理 dim (W 1 W 2)= dim W 1+ dim W 2-dim (W 1+W 2)=4-3=1 设,,4433221121ββααααx x x x W W +=+=∈ 化为齐次线性方程组0),,,(142121=--⨯X ββαα.即0711*******121211=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------X解得()(){}.4,3,2,5,4,3,2,54,,3,4,21214321TTk W W k k k k x k x k x k x -==-=+-==-==-=αααα 即例2 设3R 上线性变换T 为,)2())((3132321213T T x x x x x x x x x x T +-++=求T 在基TT T)111(,)110(,)101(321-===ααα下的矩阵B.解 在自然基321,,e e e 下,线性变换T 的坐标关系式为:,10111012123213132321⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+-++=x x x x x x x x x x Y 根据由变换的坐标式 Y=AX 得T 在自然基下矩阵,101110121⎥⎥⎦⎤⎢⎢⎣⎡-又从C e e e )()(321321=ααα 得过渡矩阵,111101112,1111101011⎥⎥⎦⎤⎢⎢⎣⎡----=⎥⎥⎦⎤⎢⎢⎣⎡-=-C C所以.4212204511⎥⎥⎦⎤⎢⎢⎣⎡--==-AC C B3.设3R 中,线性变换T 为:.3,2,1,==i T i i βα其,)1,1,1(,)1,1,2(,)1,0,1(321T T T ==-=ααα与.)1,2,1(,)0,1,1(,)1,1,0(321T T T =-==βββ求(1)T 在基321,,ααα下的矩阵。
第一讲线性空间一、线性空间的定义及性质1. 集合、数域、映射(1)集合:笼统的说是指一些事物(或者对象)组成的整体。
集合的表示:列举法、概括法.集合的运算:并( ),交( ).另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性.(2)数域:设K是由一些复数组成的集合,其中包括0与1. 如果K中任意两个数(这两个数也可以相同)的和、差、积、商(除数不为零)仍然是K中的数,那么K就称为数域.注1.数域是一种数集,对四则运算封闭(除数不+为零).例1.1 常见的数域:有理数域Q 、实数域R 和复数域C . 实数域和复数域是工程上较常用的两个数域.例1.2{},Q a a b Q =+∈,{},,Q a a b c Q =++∈,{}=,K a a b Q +∈,0101,,,0;,,(0,1,,;0,1,,)n n m i j m n m Z n m a a a P a b Z i n j m b b b ππππ∈≥⎧⎫+++⎪⎪=⎨⎬∈==+++⎪⎪⎩⎭都是数域,但{},Q a a b Q =+∈不是数域.注2. 所有的数域都包含有理数域Q ,即有理数域Q 是最小的数域.注3.在有理数域Q 与实数域R 之间存在无穷多个数域;在实数域R 与复数域C 之间不存在其他的数域.(3)映射2. 线性空间的定义:线性空间是线性代数最基本的概念之一,也是学习现代矩阵理论的重要基础.线性空间的概念是某类事物从量的方面的一个抽象.定义:设V是一个非空集合,其元素用x,y,z等表示,并称之为向量;K是一个数域,其元素用,,k l m等表示. 如果V满足下列条件(有8条性质,分两类)(I)在V中定义一个“加法”运算,即当x,y V∈时,有唯一的和x y V+∈(封闭性),且加法运算满足下列性质:(1)结合律:()()++=++;x y z x y z(2)交换律:x y y x+=+;(3)零元律:存在零元素0,使0+=;x x(4)负元律:对于任一元素x V∈,存在一元素y V∈,使0+=,且称y为x的负元素,记为x-,则有x y()0+-=.x x(II)在V中定义一个“数乘”运算,即当x V∈,k K∈时,有唯一的kx V∈(封闭性),且数乘运算满足下列性质(5)数因子分配律:()k x+y=kx+ky;(6)分配律:()k+l x=kx+lx;(7)结合律:()()k lx=kl x;(8)单位律:1x=x;则称V为数域K上的线性空间.注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同.2)两种运算、八条性质.数域K中的运算是具体的四则运算,而V中所定义的加法运算和数乘运算则可以十分抽象.3)除了两种运算和八条性质外,还应注意唯一性、封闭性. 唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足.★☆ 当数域K 为实数域时,V 就称为实线性空间;当K 为复数域,V 就称为复线性空间.例 1.3 设R +={全体正实数},其“加法”及“数乘”运算定义为x y xy ⊕= , k k x x =o .证明:R +是实数域R 上的线性空间.【证明】首先需要证明两种运算的唯一性和封闭性(1)唯一性和封闭性:唯一性显然;若00x ,y ,>> k R ∈,则有x y xy R +⊕=∈ k k x x R +=∈o 封闭性得证.(2)八条性质1)()()=()()x y z x yz xy z x y z ⊕⊕==⊕⊕,2)x y xy yx y x ⊕===⊕ ,3)1是零元素:11x x x ⊕=⋅=,4)1x是x 的负元素:111x x x x ⊕=⋅= , 5)()()()()k k k k x y xy x y k x k y ⊕===⊕o o o[数因子分配律], 6)()()()k l k lk l x x x x k x l x ++====⊕o o o [分配律],7)()()()k l klk l x x x kl x ===o o o [结合律] 8) 11x x x ==o [单位律] 由此可证,R +是实数域R 上的线性空间.例1.4 线性空间举例:(1)所有实(或复)n 维向量集合n R (或n C ),对n 维向量的加法及数乘n 维向量的运算,构成线性空间.(2)所有n 阶实矩阵的集合n n R ⨯,n 阶复矩阵的集合n n C ⨯,对于矩阵的加法与数对矩阵的乘法两种运算,都构成线性空间. 一般地,数域K 上全体m n ⨯矩阵的集合m n K ⨯,对于矩阵的加法与数与矩阵的乘法两种运算,构成线性空间.3. 线性空间性质定理:线性空间具有如下性质(1)零元素是唯一的,任一元素的负元素也是唯一的;(2)如下恒等式成立:00x =, 1x x -=-().【证明】(1)①零元素是唯一的:设存在两个零元素10和20,则由于10和20 均为零元素, 按零元律有112212000000=+=+=所以1200=, 即 10和20 相同,故只有一个零元素.②任一元素的负元素也是唯一的:假设x V ∀∈,存在两个负元素y 和z ,则根据负元律有0x y x z +==+()()00y y y x z y x z z z =+=++=++=+= 即y 和z 相同,故负元素唯一.(2)000000x x x x x =+=+-()000000x x x x =+-=-=,()()()1101x x x x x -=-+=-+-()()11110x x x x x x x x =-+⋅-=-+-=-=-.4. 线性相关性线性空间中线性相关性概念与线性代数中向量组线性相关性概念类似.(1)线性组合:1212m m x ,x x V ,c ,c c K ∀∈∈L L ,11221mm m i i i c x c x c x c x =+++∑L @称为向量组12m x ,x x L 的一个线性组合.(2)线性表示:V 中某个向量x 可表示为其中某个向量组的线性组合,则称x 可由该向量组线性表示.(3)线性相关性:如果存在一组不全为零的数12m c ,c c K ∈L ,使10m ii i c x ==∑,则称向量组12m x ,x x L 线性相关,否则称其线性无关.★☆线性相关性概念是个非常重要的概念,有了线性相关性才有下面的线性空间的维数、基和坐标。
矩阵论知识点最近考试不断,今天终于告一段落了。
矩阵论我花了将近两个礼拜复习,多少有点感悟,所以赶紧写下来,不然估计到时候又还给老师了,也希望自己的见解对你们也有帮助!!总的来说矩阵论就讲了如下6个知识点:(1)线性空间与线性变换(2)范数理论及其应用(3)矩阵分析及其应用(4)矩阵分解(5)特征值的估计(6)广义逆矩阵1.线性空间与线性变换1.1线性空间首先我们需要知道什么是空间??空间其实就是向量的集合,而什么是线性空间呢??线性空间就是满足8条性质的向量集合,这8条性质分别如下:所以矩阵论考试里面如果要你证明一个向量集合是线性空间??只需要证明集合满足上述8条性质就可以了,该证明的难度在于怎么表示该集合中的向量。
然后对于线性空间中的元素(元素很多),我们肯定不可能通过枚举法将每个元素枚举出来的吧,这样不太现实。
最好的方法就是找到线性空间中的基,通过这些基和坐标我们就可以表示出线性空间中所有的向量。
针对上述想法,我们就应该考虑满足条件基的存在性和唯一性,得到的结果是这样的基是存在的但是不唯一!!当时这里就牵涉到另一个问题,线性空间的基是不唯一的,对于同一个元素在不同基下坐标肯定是不同的!!如果我们知道基与基之间的关系,我们是否可以知道坐标与坐标的关系,这就推导出了下面公式:之后的一个概念就是线性子空间,这个名词我们可以拆开进行理解,子空间说明了该空间是一个线性空间的子集,线性说明这个子空间满足齐次性和叠加性,具体形式如下:最后一个概念是线性子空间的交与和,这和集合的交与和性质差不多,这里我需要重点介绍的直和的概念,直和的概念和集合的并类似,不同的是直和中并的两个集合是不相交的,即两个集合中没有共同元素。
以上就是线性空间中所有的知识点。
1.2线性变换及其矩阵这一节出现一个概念叫做线性变换,记为T,出现线性变换的原因就是对于一个向量我们希望通过某种变换将该向量转变成我希望的目标向量,换句话说线性变换就相当于函数,自变量就相当于我们已知的向量,因变量就是我们的目标向量,这样应该好理解点。