2016届中考数学复习专题练5-1 圆的有关概念与性质1
- 格式:doc
- 大小:105.50 KB
- 文档页数:3
第七章圆第一节圆的有关概念及性质,青海五年中考命题规律)对的圆周角,青海五年中考真题)圆的有关性质1.(2017青海中考)已知AB ,CD 是⊙O 的两条平行弦,AB =8,CD =6,⊙O 的半径为5,则弦AB 与CD 的距离为( D )A .1B .7C .4或3D .7或12.(2016青海中考)如图,在⊙O 中,AB 为直径,CD 为弦,已知∠CAB=50°,则∠ADC=__40°__.,(第2题图)) ,(第3题图))3.(2015青海中考)如图,点O 为BC ︵所在圆的圆心,∠BOC =112°,点D 在BA 的延长线上,AD =AC ,则∠D =__28°__.4.(2014青海中考)如图所示,PA ,PB 切⊙O 于点A ,B ,点C 是⊙O 上的一点,且∠ACB=65°,则∠P=__50°__.,(第4题图)) ,(第5题图))5.(2013青海中考)如图,在⊙O 中,直径CD 垂直于弦AB ,垂足为E ,若∠AOD=52°,则∠DCB=__26°__.6.(2017西宁中考)如图,四边形ABCD 内接于⊙O,点E 在BC 的延长线上,若∠BOD=120°,则∠DCE=__60°__.(第6题图)(第8题图)7.(2016西宁中考)⊙O 的半径为1,弦AB =2,弦AC =3,则∠BAC 度数为__15°或75°__.8.(2013西宁中考)如图,AB 为⊙O 的直径,弦CD⊥AB 于点E ,若CD =6,且AE∶BE=1∶3,则AB =__.,中考考点清单)圆的有关概念,是圆上任意两点间的部分叫做弧,弧有⑤圆的对称性_径定理__续表圆周角_(【方法总结】1.在解决与弦有关的问题时,作垂直于弦的直径可以构造直角三角形,从而将求解转化成解直角三角形的问题.2.在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧有一组量相等,那么它们所对应的其余各组量也相等.,中考重难点突破)垂径定理及应用【例1】(凉山中考)已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB =8 cm ,且AB⊥CD,垂足为M ,求AC 的长.【解析】先根据题意,画出图形,因为点C 的位置不能确定,故应分两种情况进行讨论.【答案】解:连接AC ,AO ,∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm ,∴AM =12AB =12×8=4 cm ,OD =OC=5 cm ,当C 点位置如图①所示时,OA =5 cm ,AM =4 cm ,CD ⊥AB ,OM =OA 2-AM 2=52-42=3 cm ,∴CM =OC +OM =5+3=8(cm ),∴AC =AM 2+CM 2=42+82=4 5 cm ,当点C 位置如图②所示时,同理可得OM =3 cm ,OC =5 cm ,MC =5-3=2 cm ,在Rt △AMC 中,AC =AM 2+MC 2=42+22=2 5 cm .1.(陕西中考)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC.若∠BAC 与∠BOC 互补,则弦BC 的长为( B )A .3 3B .4 3C .5 3D .6 3,(第1题图)) ,(第2题图))2.(2017乐山中考)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB =C D =0.25 m ,BD =1.5 m ,且AB ,CD 与水平地面都是垂直的,根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是( B)A.2 m B.2.5 m C.2.4 m D.2.1 m与圆有关的角的计算【例2】(1)(黄冈中考)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=________.,[第(1)题图]) ,[第(2)题图])(2)(咸宁中考)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为________.【解析】求圆中角的度数时,通常要利用圆周角与圆心角及弧之间的关系,遇直径时,一般联想直径所对圆周角为直角.【答案】(1)35°;(2)122°3.(2017云南中考)如图,B,C是⊙A上的两点,AB的垂直平分线与⊙A交于E,F两点,与线段AC交于D 点,若∠BFC=20°,则∠DBC=( A)A.30°B.29°C.28°D.20°4.(杭州中考)如图,已知AC是⊙O的直径,点B在圆周上(不与A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( D)A.DE=EB B.2DE=EBC.3DE=DO D.DE=OB,(第4题图)) ,(第5题图))5.(2017自贡中考)如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠P=40°,则∠B等于__25°__.6.(2017自贡中考)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=43,则AD=__4__.3,(第6题图)) ,(第7题图))7.(黔东南中考)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =15°,半径为2,则弦CD 的长为__2__.8.(河南中考)如图,在Rt △ABC 中,∠ABC =90°,点M 是AC 的中点,以AB 为直径作⊙O 分别交AC ,BM 于点D ,E.(1)求证:MD =ME ;(2)①若AB =6,当AD =2DM 时,DE =________;②连接OD ,OE ,当∠A 的度数为________时,四边形ODME 是菱形.解:(1)连接AE ,BD ,DE.在Rt △ABC 中,点M 是AC 的中点, ∴MA =MB , ∴∠MAB =∠MBA.∵四边形ABED 是圆内接四边形, ∴∠ADE +∠ABE=180°. 又∠ADE+∠MDE=180°, ∴∠MDE =∠MBA.同理可证:∠MED =∠MAB,∴∠MDE =∠MED, ∴MD =ME ; (2)①2;②60°。
考点一、圆的相关概念 1、圆的定义在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。
2、圆的几何表示以点O 为圆心的圆记作“⊙O ”,读作“圆O ”考点二、弦、弧等与圆有关的定义 (1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB ) (2)直径经过圆心的弦叫做直径。
(如途中的CD ) 直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A ,B 为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示一、圆的基本概念和性质1..如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若2AB DE =,18E ∠=︒,求AOC ∠的度数.OEDCB A2.如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A . a b c >>B . a b c ==C . c a b >>D . b c a >>ON MHGFE DC B A3.小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2B .5C .22D .34.已知:如图,在⊙O 中,弦AB CD 、交于点E ,AD CB =.求证:AC BD ∥.OEDCBA5.如图,圆心B 在y 轴的负半轴上,半径为5的⊙B 与y 轴的正半轴交于点A (0,1).过点P (0,-7)的直线l 与⊙B 相交于C 、D 两点,则弦CD 长的所有可能的整数值有_______个;它们是________________.6.如图,⊙O 的半径为5,点P 到圆心O 的距离为10,如果过点P 作弦,那么长度为整数值的弦的条数为( ).A .3B .4C .5D .6PO7.如图,O ⊙中,AB 为直径,弦CD 交AB 于P ,且OP PC =,试猜想»AD 与»BC之间的关系,并证明你的猜想.PDCOB A8.如图,等边ABC △内接于O ⊙,P 是»BC上任意一点,连结PA PB PC 、、.求证:PA PB PC =+.POCBA考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
圆的基本概念与性质内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作»AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等( )中考说明自检自查必考点中考必做题(7)两个劣弧之和等于半圆 ( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√【例2】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>ON MHGFE DC B A【答案】B【例3】 如图,直线12l l ∥,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线12l l 、于B 、C 两点,连接AC BC 、.若54ABC ∠=︒,则∠1的大小为________【答案】72°【例4】 如图,ABC ∆内接于O e ,84AB AC D ==,,是AB 边上一点,P 是优弧¼BAC 的中点,连接PA 、PB 、PC 、PD ,当BD 的长度为多少时,PAD ∆是以AD 为底边的等腰三角形?并加以证明.【答案】解:当4BD =时,PAD ∆是以AD 为底边的等腰三角形.证明:∵P 是优弧¼ABC 的中点∴»»PBPC = ∴PB PC =在PBD ∆与PCA ∆中, ∵4PB PC PBD PCB BD AC =⎧⎪∠=∠⎨⎪==⎩∴PBD PCA SAS ∆∆≌().∴PD PA =,即4BD =时,PAD ∆是以AD 为底边的等腰三角形.【例5】 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A B C D A ⇒⇒⇒⇒滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B C D A B ⇒⇒⇒⇒滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_________【答案】4π- 【解析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M 到正方形各顶点的距离都为1,故点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.二 垂径定理及其应用【例6】 如图,AB 是O e 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O e 的半径.【答案】(1)不同类型的正确结论有:22290•ABC BE CE BD DC BED BOD A AC OD AC BC OE BE OB S BC OE BOD BOE BAC ==∠=︒∠=∠⊥+==⋯V P V V V ①;②弧弧;③;④;⑤;⑥;⑦;⑧;⑨是等腰三角形;⑩∽(2)∵OD BC ⊥,∴12BE CE ==4BC =设O e 的半径为R ,则2OE OD DE R =-=-,在Rt OEB V中,由勾股定理得: 22222224OE BE OB R R +=-+=,即(),解得:5R = ,∴O e 的半径为5.【例7】 如图,在O e 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______【答案】23【例8】 如图,D 内接于O e ,D 为线段AB 的中点,延长OD 交O e 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤»¼12AB ACB =,正确结论的个数是( )A .2B .3C . 4D .5【答案】A【例9】 如图,AB 为O e 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )AA . 70︒B . 35︒C . 30︒D .20︒【答案】B【例10】 如图,AB 是O e 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O e 的直径为( )BAA .10B .12C .14D .16【答案】A【例11】 如图,O e 是ABC ∆的外接圆,60BAC ∠=︒,若O e 的半径OC 为2,则弦BC 的长为( ) A .1B C .2D .【答案】D【例12】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2BC .D .3【答案】B【解析】考查垂径定理与勾股定理的应用.此题关键找到圆心,由不在同一条直线上的三点确定唯一一个圆.如图,作线段,AB BC 的垂直平分线交于点O ,点O 即为圆镜的圆心,连结OA ,由图可知 1,2AD OD==,由勾股定理得半径OA =ODCBA【例13】 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【答案】(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ). (2)OE5. ∴将水排干需:50.510÷=小时.【例14】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )ABCDA .5米B . 8米C .7米 D.米 【答案】B【例15】 如图,AB 为O e 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______OBA【答案】2【例16】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .6 【答案】A【例17】 已知,如图,1O e 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O e 的半径。
中考数学一轮复习知识点课标要求专题训练:圆的有关性质(含答案)一、知识要点:1、圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
小于半圆的弧叫做劣弧。
大于半圆的弧叫做优弧。
能够重合的两个圆叫做等圆。
在同圆或等圆中,能重合的弧叫等弧。
2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等。
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
圆内接四边形的性质:圆内接四边形的对角互补。
5、点和圆的位置关系设⊙O的半径为r,点P到圆心的距离为OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r。
性质:不在同一条直线上的三个点确定一个圆。
定义:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。
二、课标要求:1、理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。
2、掌握垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。
中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。
1圆的基本概念与性质1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径( )中考必做题自检自查必考点中考说明2(3)半圆是弧 ( ) (4)弧是半圆( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等( )(7)两个劣弧之和等于半圆( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√ 【例2】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>ON MHG FE DC B A【答案】B【例3】 如图,直线12l l ∥,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线12l l 、于B 、C 两点,连接AC BC 、.若54ABC ∠=︒,则∠1的大小为________【答案】72°【例4】 如图,ABC ∆内接于O ,84AB AC D ==,,是AB 边上一点,P 是优弧BAC 的中点,连接PA 、PB 、PC 、PD ,当BD 的长度为多少时,PAD ∆是以AD 为底边的等腰三角形?并加以证明.【答案】解:当4BD =时,PAD ∆是以AD 为底边的等腰三角形.证明:∵P 是优弧ABC 的中点。
中考数学专题训练圆专题复习圆是一个平面内的图形,它由一个固定端点O和另一个端点A绕着O旋转一周形成。
圆也可以定义为到定点距离等于定长的所有点的集合。
圆的位置由圆心确定,大小由半径确定。
圆上任意两点之间的线段叫做弦,经过圆心的弦叫做直径。
圆上的任意一段叫做圆弧或弧,以A、B为端点的弧记作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
垂直于弦的直径平分这条弦,并且平分弦所对的弦,这就是垂径定理。
垂径定理逆定理是平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
在等圆中,弦心距相等的弦相等。
圆周角是指顶点在圆上,并且角的两边和圆相交的角。
一条弧所对的圆周角等于这条弧所对的圆心角的一半。
在同圆或等圆中,同弧或等弧所对的圆周角相等。
直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
圆与点的位置关系可以通过点到圆心的距离与半径的大小关系来判断。
如果点到圆心的距离大于半径,则点在圆外;如果距离等于半径,则点在圆上;如果距离小于半径,则点在圆内。
确定一个圆需要不在一条直线上的三个点。
经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,这个三角形叫做这个圆的内接三角形。
外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,外心到三角形三个顶点的距离相等。
反证法证题的步骤是假设命题的结论不成立,从这个假设出发,经过推理论证,得出矛盾,由矛盾判定假设不正确,从而肯定命题的结论正确。
锐角三角形的外心在三角形的内部,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部。
直线与圆的位置关系有三种:相交、相切和相离。
从公共点的个数来判断,直线与圆有两个公共点时相交,有唯一公共点时相切,没有公共点时相离。
从点到直线的距离与半径的大小关系来判断,距离小于半径时相交,等于半径时相切,大于半径时相离。
2、切线的性质:经过圆上一点的切线垂直于以该点为圆心的半径。
中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(基础)责编:常春芳【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系 1.点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:点P 在圆外⇔d >r ; 点P 在圆上⇔d =r ; 点P 在圆内⇔d <r . 要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A 、B 的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r ”时,要特别注意,R >r .【典型例题】类型一、圆的性质及垂径定理的应用【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题1】1.已知:如图所示,在⊙O 中,弦AB 的中点为C ,过点C 的半径为OD .(1)若AB =OC =1,求CD 的长; (2)若半径OD =R ,∠AOB =120°,求CD 的长.【思路点拨】如图所示,一般的,若∠AOB =2n °,OD ⊥AB 于C ,OA =R ,OC =h ,则AB =2R ·sin n °=2n ·tan n °=CD =R -h ;AD 的长180n Rπ=. 【答案与解析】解:∵半径OD 经过弦AB 的中点C , ∴半径OD ⊥AB .(1)∵AB=AC=BC∵OC=1,由勾股定理得OA=2.∴CD=OD-OC=OA-OC=1,即CD=1.(2)∵OD⊥AB,OA=OB,∴∠AOD=∠BOD.∴∠AOB=120°,∴∠AOC=60°.∵OC=OA·cos∠AOC=OA·cos60°=12 R,∴1122CD OD OC R R R =-=-=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.举一反三:【变式】在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到A点时,乙已跟随冲到B点(如图所示),此时甲是自己直接射门好还是迅速将球回传给乙,让乙射门好呢?(不考虑其他因素)【答案】解:过M、N、B三点作圆,显然A点在圆外,设MA交圆于C,则∠MAN<∠MCN.而∠MCN=∠MBN,∴∠MAN<∠MBN.因此在B点射门较好.即甲应迅速将球回传给乙,让乙射门.2.(2015•大庆模拟)已知AB是⊙O的直径,C是圆周上的动点,P是弧AC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.【思路点拨】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)如图2,根据圆心角、弧、弦的关系,以及三角形内角和等推论证来求得∠A的度数.【答案与解析】(1)证明:连结AC,延长PO交AC于H,如图1,∵P是弧AB的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)解:如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°,当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=()°,即∠PAO=()°.综上所述,∠A的度数为36°或()°.【总结升华】本题考查了圆周角定理及其推论同时考查了等腰三角形的性质、垂径定理和三角形内角和定理.举一反三:【变式】(2015•温州模拟)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.【答案】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.类型二、圆的切线判定与性质的应用3.如图所示,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC与⊙O相切.【思路点拨】AC与⊙O有无公共点在已知条件中没有说明,因此只能过点O向AC作垂线段OE,长等于⊙O的半径,则垂足E必在⊙O上,从而AC与⊙O相切.【答案与解析】证明:连接OD,作OE⊥AC,垂足为E,连结OA.∵AB与⊙O相切于点D,∴OD⊥AB.∵AB=AC,OB=OC,∴∠1=∠2,∴OE=OD.∵OD为⊙O半径,∴AC与⊙O相切.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.求△ABC的内切圆的半径.【答案】解:设△ABC的内切圆与三边的切点分别为D、E、F,根据切线长定理可得:AE =AF ,BF =BD ,CD =CE ,而AE+CE =b ,CD+BD =a ,AF+BF =c , 可求2a b cCE +-=. 连接OE 、OD ,易证OE =CE .即直角三角形的内切圆半径2a b cr +-=.4.如图所示,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D =30°. (1)求证:AD 是⊙O 的切线; (2)若AC =6,求AD 的长.【思路点拨】(1)连接OA ,根据圆周角定理求出∠O 的度数,根据三角形的内角和定理求出∠OAD ,根据切线的判定推出即可;(2)得出等边三角形AOC ,求出OA ,根据勾股定理求出AD 的长即可. 【答案与解析】(1)证明:连接OA ,∵1sin 2B =,∴∠B =30°. ∵∠AOC =2∠B ,∴∠AOC =60°. ∵∠D =30°,∴∠OAD =180°-∠D -∠AOD =90°. ∴AD 是⊙O 的切线.(2)解:∵OA =OC ,∠AOC =60°,∴△AOC是等边三角形,∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=【总结升华】证明直线是圆的切线的方法:①有半径,证垂直;②有垂直,证半径.举一反三:【变式】如图所示,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线交PO于C 点,求证:PC=CD.【答案】证明:连接OD.∵CE切⊙O于D,∴OD⊥CE.∴∠2+∠3=90°.∵OA⊥OB,∴∠P+∠A=90°.∵OD=OA,∴∠3=∠A..∴∠P=∠2.又∵∠1=∠2,∴∠P=∠1.∴PC=CD.类型三、切线的性质与等腰三角形、勾股定理综合运用5.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC 的平分线交AC于点D,求∠CDP的度数.【思路点拨】连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【答案与解析】解:连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°.【总结升华】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于做好辅助线构建直角三角形,求证∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题3】6.如图所示,AB是⊙O的直径,AF是⊙O的弦,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若DE=4,sinC=35,求AE的长.【思路点拨】构造半径、半弦、弦心距的直角三角形.【答案与解析】解:(1)证明:连接OE,BF,交于点G,则BF⊥AF,BF∥CD.∵OA=OE,∴∠OAE=∠OEA.∵∠OAE=∠FAE,∴∠OEA=∠FAE.∴OE∥AF,∵AF⊥DE,∴OE⊥CD.∴CD为⊙O的切线.(2)解:∵ BF∥DE,OE∥AF,∠D=90°,∴四边形DEGF为矩形.∴BF=2GF=2DE=8.∵BF∥CD,∴∠C=∠ABF.可求得OA=OB=5,OG=3.∴DF=EG=2,AF=AB·sinC=6.∴AD=8,AE=【总结升华】(1)通过挖掘图形的性质,将分散的条件sinC=35,DE=4,集中到一个直角三角形中,使问题最终得到解决;(2)本题第(2)问还可以适当改变后进行变式训练,如改为:若DF=2,sinC=35,求AE的长;(3)第(2)问还可以过O作OM⊥AF于M后得OM=DE=4,sin∠AOM=sinC=35加以解决.。
中考数学复习专练知识考点:圆的有关性质中考数学温习专练知识考点:圆的有关性质纲要求:1.了解圆的有关概念和性质,了解圆心角、弧、弦之间的关系.命题趋向:2.了解圆心角与圆周角及其所对弧的关系,掌握垂径定理及推论.中考主要考察圆的有关概念和性质,与垂径定理有关的计算,与圆有关的角的性质及其运用.题型以选择题、填空题为主.知识梳理一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的一切点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所构成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.2.圆的有关概念(1)衔接圆上恣意两点的________叫做弦;(2)圆上恣意两点间的________叫做圆弧,简称弧.(3)________相等的两个圆是等圆.(4)在同圆或等圆中,可以相互________的弧叫做等弧. 3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转恣意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.假定一条直线具有这五项中恣意两项,那么必具有另外三项.三、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,那么其他对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.。
第五章 圆
§5.1 圆的有关概念与性质
一、选择题
1.(原创题)如图,已知BD 是⊙O 的直径,点A ,C 在⊙O
上,AB ︵=BC ︵
,∠AOB =60°,则∠BDC 的度数是( ) A .20° B .25° C .30°
D .40°
解析 ∵∠AOB 是AB ︵所对的圆心角,∠BDC 是BC ︵
所对
的圆周角,AB ︵=BC ︵
,∠AOB =60°,∴∠BDC =12∠AOB =30°.故选C. 答案 C
2.(原创题)下列结论正确的是
( )
A .长度相等的两条弧是等弧
B .半圆是弧
C .相等的圆心角所对的弧相等
D .一条弦所对的所有的圆周角相等
解析 只有完全重合的弧才是等弧,长度相等的弧不一定是等弧,故A 错误;半圆是弧的一种,故B 正确;只有在同圆或等圆中,相等的圆心角所对的弧才相等,故C 错误;只有这条弦是直径时,所对的圆周角都是直角,不是直径时,优弧与劣弧上的圆周角不相等,故D 错误.故选B. 答案 B
3.(原创题)如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD ∶∠BCD =3∶2,则∠DCE 的大小是 ( ) A .72° B .100° C .108°
D .120° 解析 ∵∠BAD +∠BCD =180°,∠BAD ∶∠BCD =3∶2,∴∠BCD =25×180°=72°.∴∠DC
E =108°.故选C.
答案 C
4.(原创题)如图,已知AB 为⊙O 的直径,∠CAB =30°,
则cos D 的值为 ( ) A.12
B.22
C.32
D. 3
解析 ∵AB 为⊙O 的直径,∴∠ACB =90°.∵∠CAB =30°,∴∠B =60°.∵∠B 与∠D 都是AC ︵
所对的圆周角,∴∠B =∠D =60°.∴cos D =cos 60°=1
2.故选A. 答案 A 二、填空题
5.(改编题)如图,在半径为13的⊙O 中,OC 垂直弦AB 于点D ,交⊙O 于点C ,AB =24,则CD 的长是_______. 解析 连结OA ,∵OC ⊥AB ,AB =24,∴AD =1
2AB =12.在Rt △AOD 中,∵OA =13,AD =12,∴OD =OA 2-AD 2=132-122=5,∴CD =OC -OD =13-5=8. 答案 8 三、解答题
6.(改编题)在⊙O 中,直径AB ⊥CD 于点E ,连结CO 并延长交AD 于点F ,且CF ⊥AD . (1)求∠D 的度数;
(2)若AD 的长为2,求OE 的长. 解 (1)连结BD ,
∵AB 是⊙O 的直径,∴BD ⊥AD .
又∵CF ⊥AD ,∴BD ∥CF . ∴∠BDC =∠C . 又∵∠BDC =1
2∠BOC , ∴∠C =1
2∠BOC .
∵AB ⊥CD ,∴∠C =30°. ∴∠ADC =60°.
(2)∵∠ADC =60°,∴∠A =30°. ∴DE =CE =1
2AD =1.
∵CF ⊥AD ,∴∠CFD =90°, ∴∠C =∠A =30°.
在Rt △COE 中,tan C =OE
CE , ∴OE =CE ·tan C =1×33=3
3.。