在体育运动中的物理学
- 格式:docx
- 大小:10.46 KB
- 文档页数:3
在体育运动中的物理学体育运动与物理学的关系体育运动是人类文明发展的重要组成部分之一。
随着体育运动的不断发展和推广,越来越多的人开始关注体育运动的技术含量和科学性。
其中,物理学是体育运动不可或缺的一部分,体育运动是在物理学法则的基础上进行的。
本文将重点讲述体育运动中的物理学知识,为大家揭示体育运动中的科学性。
一、运动中的速度和加速度速度和加速度是运动学中最基本的物理量,对运动的描述和分析有着至关重要的作用。
在体育运动中,速度和加速度常常是得分和胜利的关键。
以田径运动为例,百米赛跑是最具代表性的比赛项目之一,选手的速度和加速度决定了比赛的胜负。
选手在起跑时需要尽快地加速,达到最高速度,并保持最高速度跑完全程。
短跑运动员需要快速启动,通过高速奔跑完成比赛。
中长跑和长跑运动员需要根据比赛规律选择合适的速度,提高稳定性和耐力。
二、运动中的力学运动中的力学是运动中的重要物理学内容。
在体育运动中,各种运动动作中都包含着力学原理。
例如,高尔夫球运动员必须掌握击球时的力学原理,通过挥杆的力量和方向来控制球的飞行轨迹和落点。
篮球运动员在投篮时需要掌握投篮时的力量和方向,才能精准投篮。
足球运动员需要掌握踢球时的力量和方向,才能控制球的飞行轨迹和落点。
三、运动中的动力学动力学是研究物体运动的力学分支学科,在体育运动中同样也有着重要的应用。
例如,游泳运动员需要通过合理的推进力、耐力和泳姿掌握游泳技术;跳高运动员需要掌握起跑速度、起跳时的力量和角度、控制跳跃姿势等一系列动力学知识才能完成跳高项目。
此外,在球类运动中,掌握运动中的动力学知识也十分重要。
例如,足球门将需要判断对手射门的球速和落点,通过推算掌握抓住或击出球的时机与方向。
四、运动中的能量转化能量转化是研究物体能量变化的物理学分支学科,也是体育运动中的重要知识。
不同的体育运动中,能量转化的方式也各有不同。
例如,田径运动中的短跑和跳跃项目中,动能转化为位能,而长跑项目中,人体内部的能量转化为动能。
物理与体育的结合学习物理的运动应用法物理与体育的结合:学习物理的运动应用法在学校的课程中,物理和体育往往是被独立教授的学科。
然而,物理和体育实际上有着紧密的联系。
物理中涉及的力学、运动学等知识,可以应用于体育运动中,帮助我们更好地理解和改进运动技巧。
本文将探讨物理与体育的结合,以及如何通过学习物理的运动应用法来提升体育表现。
一、物理在体育运动中的作用物理是揭示自然界规律的一门科学,通过研究物体运动的规律,我们可以用物理理论解释体育运动中发生的现象。
具体而言,物理在体育运动中发挥着以下几个方面的作用:1. 描述和解释运动:物理学通过力学、运动学等分支学科,可以准确描述和解释运动的过程和规律。
例如,通过运动学的知识,我们可以计算运动员在不同时间段内的平均速度和加速度,从而评估其运动状态。
2. 分析运动技巧:物理学可以帮助我们分析运动技巧中的物理原理。
例如,在传球时,球员需要考虑力的大小和方向,以保证球传得准确。
通过物理学的分析,我们可以理解传球的抛物线轨迹,帮助球员更好地把握力的施加点和角度。
3. 优化训练计划:物理学可以为体育运动提供科学的训练方法和计划。
通过运用物理学的知识,我们可以分析运动员在不同活动中消耗的能量、克服的阻力等,并制定相应的训练计划,使运动员的体能得到提升。
二、学习物理的运动应用法的重要性学习物理的运动应用法对于体育运动的提高与发展具有重要意义。
以下是学习该应用法的重要性所在:1. 增强理解能力:学习物理的运动应用法可以帮助我们更深入地理解运动的本质和规律。
通过理论与实践相结合,我们能更好地把握运动中的物理问题,并通过具体的例子加深对物理原理的理解。
2. 改善技术水平:通过学习物理的运动应用法,我们能够更好地理解和应用运动中的物理原理,从而在技术层面上有所提高。
例如,学习物理的转动力学,可以帮助我们更好地掌握滑雪或滑板等运动项目中的平衡和转向。
3. 提高竞技表现:学习物理的运动应用法,可以帮助我们在比赛中发挥更好的竞技表现。
体育运动中的物理知识研究体育运动是一个涉及到大量物理学知识的领域。
所有的运动,从踢足球到跳绳,都涉及到不同程度的物理学概念和原理。
了解这些概念和原理可以帮助我们更好地理解运动,改进技术,提高运动水平。
下面将介绍一些常见的体育运动中的物理学概念和原理。
力的概念力是任何物体做出运动或改变其运动方向、速度或形状的原因。
力的大小和方向可以影响物体的运动状态。
在体育运动中,力的大小和方向通常控制着一个运动员或一个对象的运动方向和速度。
由于物体不能自己运动,所以需要一个外部的力才能让物体运动。
重力、电磁力和弹力等是常用的外部力。
在运动中,力可以分解为施力和受力。
施力和受力的大小和方向是相等和相反的,这被称为牛顿第三定律。
动量和动能动量是一个运动物体的惯性,非常重要的物理学概念。
它是质量和速度的乘积,可以通过改变速度或质量来改变动量。
在体育运动中,动量对于手球、排球、篮球等比赛的胜负起着非常重要的作用。
动能是运动物体具有的能够执行动作或执行工作的能力。
它是质量、速度和方向的函数。
动能可以通过增加速度来增加。
摩擦力和滑动摩擦力摩擦力是两个物体之间的阻力。
它的强度由两个物体之间的粗糙程度和压力来决定。
摩擦力是有限的,如果它与阻力相等,则物体保持静止。
在滑板和冰上滑冰等运动中,摩擦力是非常重要的。
滑动摩擦力与摩擦力类似,但是涉及到移动物体之间的摩擦。
如果物体在地面上滑动而不滚动,则涉及到滑动摩擦力。
在足球和曲棍球等运动中使用这种力学概念以改变球的运动方向和速度。
空气阻力和水阻力空气阻力和水阻力是涉及到物体在气体或流体中移动的阻力。
当物体移动时,空气或水对其施加一个力,产生阻力。
这种阻力是随着物体的速度和表面积的增加而增加的。
在游泳和长跑等运动中,水阻力和空气阻力是非常重要的,因为它们可以阻碍运动员的速度。
运动中的物理学概念和原理非常重要,因为它们可以帮助我们更好地理解运动,改进技术,提高运动水平。
无论是在足球场上,游泳比赛中,仍是在其他体育项目中,合理地应用物理学原理可以帮助人们更好地应对运动中的挑战。
体育运动中的物理知识研究体育运动是人们生活中不可或缺的一部分。
在体育运动中,物理知识扮演着重要的角色。
本文将介绍体育运动中的物理知识。
一、力学力学是物理学的重要分支之一,也是体育运动中最重要的分支。
在运动中,力是不可缺少的。
我们知道,物体的运动需要力的作用,力可以加速或减速物体的运动。
比如,在游泳比赛中,选手需要运用水的阻力以及自己的力量来快速游泳。
在篮球比赛中,球员们要用力投篮并使篮球进入篮筐。
在田径比赛中,运动员需要发挥自己的力量来完成跳高、跳远等动作。
二、流体力学动力学是研究物体的运动规律的。
在田径比赛中,运动员需要了解自己的身体重心、重心的位置和重心变化对身体运动的影响。
在短跑比赛中,优秀的起跑姿势帮助运动员在短时间内获得更快的速度。
在赛跑比赛中,运动员需要掌握节奏感,从而达到更好的成绩。
在长跑比赛中,运动员需要了解呼吸技巧和合适的步频和步幅来提高耐力。
四、能量转化在运动中,能量的转化也非常重要。
能量转化是热力学和物理学的分支之一,其中研究了物体、系统或区域内不同形式的能量的相互转化规律。
在长跑比赛中,运动员需要合理地消耗自己的体力和能量,使自己在比赛结束时保持最佳状态。
在击球运动(如网球、乒乓球等)中,球拍、球和身体之间的能量的转换,能力拍打球时又被球拍、势能、动能以及滚动摩擦等各种物理现象相结合的。
在健身中,锻炼过程中需要了解如何合理使用能量,才能达到更好的健身效果。
总之,物理学是体育运动的重要组成部分,不仅可以帮助运动员更好的理解和掌握运动技巧,还可以帮助爱好体育的人更好的了解各种体育运动的原理。
物理学原理在体育运动中的应用分析物理学是一门研究自然界基本规律的科学,它的原理和法则在人类社会的各个领域都有着广泛的应用。
体育运动作为人类生活中重要的一部分,也不例外地受到了物理学原理的影响和应用。
本文将从力学、动力学、流体力学等多个角度,分析物理学原理在体育运动中的应用,并探讨其对于提高运动表现和预防运动损伤的重要性。
我们来看力学在体育运动中的应用。
在体育运动过程中,各种运动都离不开力学的影响。
运动员在进行跳远时,需要通过腿部的肌肉向下用力,从而获得向上的动能,最终实现跳远。
而这一过程正是受到了牛顿三定律的影响。
根据牛顿第二定律,加速度等于力除以质量,因此运动员需要通过腿部用力产生足够的力量,才能实现加速度,从而进行跳远。
牛顿第一定律也对运动员的运动起到了重要的作用,它告诉我们,物体如果不受外力作用将保持原来的状态,也就是说,运动员在跳远的过程中需要保持良好的平衡和稳定性,以便最终完成跳远。
动力学在体育运动中的应用也是十分重要的。
动力学是研究物体的运动状态、它们之间的相互作用和力的关系的科学。
在体育运动中,动力学的原理也在不同的运动项目中起到了重要的作用。
在田径运动中的标枪投掷项目中,动力学的原理告诉我们,标枪的飞行距离与投掷的初速度和角度有着密切的关系。
根据动力学的原理,运动员需要通过优化投掷的动作和力量的施加,使得标枪达到最佳的初速度和角度,从而获得最远的飞行距离。
动力学的原理也可以应用在其他诸如踢球、游泳等各种不同的运动项目中,帮助运动员更好地利用力量和动作,实现更好的运动表现。
物理学原理在体育运动中的应用是十分重要的。
通过对力学、动力学、流体力学等多个方面的应用,我们可以更好地理解体育运动的运动规律,帮助运动员提高运动表现和预防运动损伤。
我们希望运动员和教练员们能够重视物理学原理在体育运动中的应用,加强相关知识的学习和应用,从而取得更好的运动成绩。
我们也希望相关科研机构和学者们能够进一步深入研究物理学原理在体育运动中的应用,为提高运动表现和预防运动损伤提供更多有力的支持。
体育运动中的物理知识【摘要】体育运动中的物理知识是运动员必须掌握的重要知识之一。
本文将从动能转化、力学原理、重力影响、空气阻力和角动量等方面探讨体育运动中的物理知识。
在运动中,动能的转化能够影响运动员的速度和力量输出,力学原理则可以帮助运动员更好地控制力的方向和大小。
重力的影响使得运动员需要在运动中克服重力的作用,空气阻力则会减缓运动员的速度。
角动量的理解可以帮助运动员更好地掌握转动动作。
物理知识对体育运动有着重要的影响,只有深入理解和运用这些知识,才能更好地提高运动表现。
进一步研究物理知识对于进一步提升体育运动水平具有重要意义。
通过深入研究物理知识,不仅可以帮助运动员更好地掌握运动技巧,还能够推动体育运动领域的发展和创新。
【关键词】体育运动,物理知识,动能转化,力学原理,重力影响,空气阻力,角动量,影响,研究,意义1. 引言1.1 体育运动中的物理知识的重要性体育运动中的物理知识是指运动过程中涉及到物理学原理的知识。
在进行体育运动时,人体的各种动作和运动都受到物理学的影响,通过理解和运用物理知识可以更好地控制运动过程,提高运动表现,预防运动损伤,实现最佳运动效果。
1. 动能转化:体育运动过程中,会涉及到各种形式的动能转化,如机械能、动能、势能等。
了解这些动能之间的相互转化关系可以帮助运动员在比赛中更有效地利用能量,提高运动效率。
2. 力学原理:在进行体育运动时,人体会受到外力的作用,运动员需要根据力学原理来调整自己的力量、速度和角度,以达到最佳的运动效果。
深入理解力学原理可以帮助运动员更好地控制运动过程,避免运动损伤。
3. 重力影响:重力是影响体育运动的重要因素之一,了解重力对运动员身体的影响,可以帮助运动员更好地掌握运动技巧和姿势,提高运动表现。
4. 空气阻力:在进行高速运动时,空气阻力会对运动员产生影响,了解空气阻力的原理可以帮助运动员挖掘潜力,提高速度和力量。
5. 角动量:角动量是物理学中一个重要的概念,体育运动中也常常涉及到角动量的应用。
2007.11教与学体育运动是指以身体练习为基本手段,以增强人的体质,促进人的全面发展,丰富社会文化生活和促进精神文明为目的的一种有意识、有组织的社会活动.物理学既是一门实验科学,又是一门应用科学.每项体育运动中都渗透着许多物理知识.因此,了解和掌握物理学知识,进而将其运用到体育活动中,对体育运动的发展具有重要意义.一、惯性定律在体育运动中的应用惯性定律在体育运动中有广泛应用.如跳高中运动员的助跑,其目的是为了提高速度,增加动力,因而这种惯性作用具有很大的促进力,可以使其跳得更高;踢足球时,铲球为什么容易摔倒?百米冲刺时,到终点后很难停住;举重运动员在提杠铃或上举杠铃时为什么要注意用大力气把握杠铃的运动状态,即克服静止状态使之进入运动状态,一旦杠铃进入运动,就要求运动员保持举杠铃时动作的连贯性,中途稍有停顿,不仅不可能完成动作,还可能导致比赛的失败.这说明当人身体的某一部分受到外力作用时,身体的另一部分不能立刻随之改变.二、斜抛运动在体育运动中的应用向斜上方抛出的物体运动叫斜抛运动.斜抛运动又分为水平方向的匀速直线运动和竖直方向的自由落体运动.水平方向的距离叫射程,竖直方向的距离叫射高.实验证明,在抛射角小时,射程随着抛射角的增大而增大;当抛射角为45°时,射程最大;抛射角增大,射程反而减小.投出的标枪、掷出的铅球、跳远时的腾空等都是斜抛运动.从理论上讲,要想获得最大的射程,抛射角应该为45°.但实际上射程还与抛出点的高度有关,通过复杂的计算,获得以下的结论:欲使掷出的铅球获得最大的距离,其出手的角度应小于45°,这角度随出手速度的增大而增大,而随出手高度的增大而减小.对出手高度为1.7m~2m,而出手速度为8m/s~14m/s的人来说,最理想的出手仰角应为38°~42°.三、摩擦力在体育运动中的应用摩擦力在体育运动中的应用随处可见.如赛车时,车轮多是非常粗糙的防滑轮,其目的就是为了增大摩擦力;拔河时,在双方力量相当的情况下,脚下摩擦力的大小是胜负的关键.当然,在体育实践中,有些动作需要减小摩擦力,也有些动作需要增大摩擦力.例如体操运动员在上杠前手上抹一些镁粉,做自由体操前,运动员在体操鞋底蘸点松香粉,目的都是为了增大摩擦力.而滑冰运动员比赛前磨冰刀、在滑雪板上涂润滑油等,目的却是为了减小摩擦力.体育运动中的物理学□河南南阳市第五高中宋红宾教学论坛742007.11教与学!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!体育运动中还有很多物理学知识.如相互作用力的应用.在拳击运动中,双方对打就是作用力和反作用力的较量.由于双方打的部位不同,所以,才有作用程度的不同,才有胜负之分.又如动量、冲量的应用.跳远时,跳坑里面放的沙子;跳高时,跳杆下面放的海棉.其目的都是为了运动员落地时增大作用时间,从而减小对运动员的冲击力.还有功和能的应用.举重运动员举重的过程就是重力做功的过程,也是运动员能量损耗的过程,做多少功,就需要有多少能量消耗.因而,身材矮的运动员重力做功小,能量损耗也少,反则反之.其实,在生活中学习知识,在运动中体验知识,比在课堂上死板的灌输知识,效果会更好.让学生更加喜欢体育活动,让物理更贴近学生,从平常的事物中找到知识,找到乐趣,找到思考问题与解决同题的科学思维方法.你在观看体育比赛时,是否想过体育运动与物理学也有着密切的关系呢?下面为你介绍几个最常见的用到物理学原理的运动现象.举重擦“白粉”在举重比赛中,运动员上场之前总要在手上擦些“白粉”.这些“白粉”是镁粉,擦过之后,可增大手与被握物的摩擦,减少运动中的失误.游泳穿“鲨鱼衣”在游泳比赛中,运动员常穿特殊的游泳衣———“鲨鱼衣”.穿这种游泳衣的目的是减小运动员与水之间的摩擦,提高成绩.跳远要助跑助跑是为了使运动员在起跳时具有一定的初速度,起跳后由于惯性可使运动员保持继续向前运动的状态,这样就会跳得更远些.射击“三点一直线”在射击比赛中,运动员要取得好成绩,就必须掌握“三点一直线”的原理,即眼睛看到瞄准点、准星尖和标尺缺口三者重合时再进行射击.这符合光的直线传播规律.接力关键在交接棒在田径赛场上,进行接力比赛时,接好棒是关键.而在交接棒过程中,运动员必须充分利用好运动的相对性才能把棒接好,获得好成绩.短跑穿钉鞋运动员在短跑时要换穿短跑运动鞋,这种鞋的底部安有小钉,运动员在高速奔跑时,小钉可以扎进跑道,有效地防止运动员打滑摔倒.下边具体说说简单的跑步中的物理原理.谈体育运动与物理学的关系□郑州市第四十七中学张磊教学论坛75。
体育运动中物理知识的应用是非常广泛的,从运动员的训练和比赛到球迷的观看和理解比赛的技术层面,都会涉及到物理学的相关知识。
在运动员的训练中,物理学的知识可以帮助他们更好地理解身体的运动原理,提升身体协调能力和平衡感。
例如,通过了解力学原理,运动员可以更好地控制自己的力量输出,使得跳跃、投掷等动作更加精准。
此外,物理学的知识还可以帮助运动员更好地理解自己的身体状态,例如分析肌肉的受力情况,从而更好地规划训练计划。
在比赛中,物理学的知识也可以帮助运动员发挥出更好的表现。
例如,游泳运动中,运动员可以通过了解水的流动原理来提升自己的游泳速度。
此外,在球类运动中,运动员还可以利用物理学的知识来控制球的轨迹,使得自己的技术更具有针对性。
在球迷的观看体育比赛的过程中,物理学的知识也可以帮助他们更好地理解比赛的技术层面。
例如,在足球比赛中,通过了解物体运动的相关原理,球迷可以更好地理解为什么球会被踢得很快,或者为什么足球运动员会使用什么样的踢法来踢球。
在排球比赛中,通过了解力学原理,球迷可以更好地理解为什么排球运动员会使用什么样的力量来打球,以及为什么球会以特定的轨迹飞行。
此外,物理学的知识还可以帮助球迷更好地理解比赛的策略和战术。
例如,在篮球比赛中,通过了解物体的平衡原理,球迷可以更好地理解为什么篮球运动员会使用什么样的身体姿态来投篮,以及为什么某些运动员的投篮命中率会更高。
总之,物理学在体育运动中的应用非常广泛,无论是在运动员的训练和比赛过程中,还是在球迷的观看比赛过程中,都会涉及到物理学的相关知识。
这些知识不仅可以帮助运动员提升自己的技术水平,还可以帮助球迷更好地理解和享受比赛。
因此,在体育运动中学习物理学是非常有必要的,它不仅可以帮助我们更好地参与体育运动,还可以丰富我们的知识面,提升我们的智力水平。
此外,物理学在体育运动中的应用还可以带来一些更加实际的好处。
例如,在体育建筑设计中,通过运用物理学的知识,可以设计出更加安全和舒适的体育场馆,使得运动员和观众能够更好地参与和享受体育比赛。
物理学原理在体育运动中的应用分析一、运动力学在体育运动中的应用运动力学是研究物体运动的科学,它的研究对象是物体的运动状态、速度、加速度等。
在体育运动中,对运动员的身体运动状态和力量的控制和应用有着重要的作用。
以田径运动为例,短跑运动员在起跑的瞬间需要用力向前推进,这就涉及到动力学的问题。
运动员必须了解如何正确地运用力量进行起跑,以达到最大的加速度,并在规定时间内完成比赛。
在跳高、跳远等项目中,运动员需要掌握合理的速度和弹跳力度,才能在最短的时间内跳得更高或者更远。
这就需要对力、速度和加速度的关系有深入的了解,并通过不断的训练和实践,来提高自身的运动技能和水平。
动力学是研究物体在受力作用下的运动规律的学科。
在体育运动中,运动员需要通过合理的受力来改变自身的运动状态,以达到更好的比赛成绩。
例如在击剑比赛中,运动员需要通过灵活的身体和剑术技巧来应对对手的进攻和防守。
这就需要运动员掌握合理的身体动作和力度,才能在比赛中获得胜利。
能量转换是指物体在运动或者发生变形过程中,能量的形式发生转换的过程。
在体育运动中,能量转换对于运动员的身体状态和动作有着直接的影响。
例如在游泳比赛中,运动员需要通过用力踢腿和划水来前进,这就涉及到了能量转换的问题。
运动员需要掌握合理的踢腿和划水力度,来达到最大的前进速度。
在举重比赛中,运动员需要通过力量的转换,来提起重物并完成举重动作。
运动员需要在短时间内通过身体的机械能,将物体举起并放置在指定的位置。
这就需要运动员了解如何通过合理的力量和速度,来实现物体的能量转换,最终完成举重动作。
总结物理学原理在体育运动中有着重要的应用价值。
无论是在运动力学、动力学还是能量转换方面,都需要运动员了解并掌握物理学原理的规律,来提高自身的运动能力和运动技巧。
通过对物理学原理的理解和应用,运动员可以更好地完成各项比赛动作,提高比赛成绩,从而实现更好的体育运动表现。
物理学原理不仅在理论上对于体育运动有重要意义,同时也对于实践中的运动训练和比赛表现有着直接的影响。
在体育运动和休育训练中的各种运动器械上,都存在着运动者的举、床、推、拉、跑、蹬、踢、打、击、投、弹跳等力的作用C与力有关的这些运动都包含着丰富而深奥的物理知识,如果运动者懂得这些知识并加以运用,必会提高自己的运动成绩和竞技水平。
特别是在提倡素质教育、重视学生能力教学的今天,如果我们教师和教练在课堂上不失时机地讲解有关的这方面知识,必会提高他们参入运动的积极性,使他们感到学有所用、学有所得,便于巩固学到的科学文化知识,还能最终达到完成教育教学任务的目的。
Tlfn 我们来谈谈物理知识在体育运动中的一些应用。
一、物理中的“速度”
物理学里,速度是用来反映物体运动快慢的物理最。
运动场上的育种运动几乎都有一个速度快慢的问题。
例如川径运动中所有的径赛及皮划艇和游泳比赛等,都是以计时的多少来确定运动员的快慢和比赛成绩的C计时员根据跑或游相同的路程所用的时间长短来决定快慢:而正在看台上观看比赛的观众则根据在相同的时间内跑或游的路程长短来判断快慢(即看到在前而的运动员快)°另外,在学校运动会上进行的百米赛跑比赛中,计时员一定要看发令枪“冒烟”时开始计时,而不是听发令的"枪声”时开始计时 C 因为看“冒烟”是以光速传播,声音在空气中的传播速度只有340米/秒,声音传到终点大约需0.29秒的时间,而光传播100 m所需的时间非常短(几乎不需要时间),所以计时员看发令枪“冒烟”计时比听“枪声”计时要准确得多c 还有各种球类运动中的■快攻战术”就是利用速度的定义,快速奔跑、快速移动、摆脱对手、寻求空挡,达到完成“快攻”的目的。
所谓“快攻”,就是运动员在运动过程中增大运动速度,即进行加速运动。
根据牛顿第二定律,运动员进行加速运动,必须用力:如果运动员在运动过程中匀速运动,则不需要用力。
在激烈的比赛中,为r达到目的,某一方队员常常利用这方面的知识来实施战术,俩队员相互配合, 采取一队员在运动过程中不断加速,给对方比赛队员施加心理压力,迫使对方队员也加速,消耗对方队员的体力或造成对方队员犯规:而另一队员则进行匀速运动,保存体力,达到最后胜利的目的。
例如,2000 悉尼奥运会上,我国优秀运动员王丽萍就是靠队友的配合而获得20公理竞走冠军的。
二、物理中的“摩擦”
物理学里,摩擦力的大小跟压力的大小和接触面的粗糙程度有关。
任何物体在运动过程中都要受到摩擦力的作用,参入各种运动的运动者和运动器械也会受到摩擦力的作用。
有些运动项目,为了提高运动者的成绩,需要增大摩擦力。
例如,在百米赛跑中,运动者必须穿着底上带有鞋钉的跑鞋:还有体操运动员和举重运动员在比赛之前,总是要在手上抹些镁粉,这样做的目的都是为了增大摩擦力便于提高运动成绩。
采取的方法都是增大接触面的粗糙程度来增大摩擦力的。
特别是休操运动员在杠上做回环动作时,手握杠又不能太紧(即不能增大手对杠的压力来增大摩擦),所以,在手上抹些镁粉来增大摩擦就显得尤为重要。
还有球类运动的一些器械,在制造时,都考虑到r增大摩擦的因素。
例如,足球守门员戴的手套、篮球表面上的花纹、乒乓球正胶球拍胶皮上的胶粒长短和反胶球拍胶皮上的粘性度、铅球表而待造得很粗糙等,都是采取增大接触而的粗糙程度来增大摩擦力的。
三、物理中的“抛体运动”
体育运动中的铅球、标枪、铁饼及足球射门和投篮等运动都属于物理学中的斜上抛运动,为提高运动成绩和进球门技术,必须掌握好初始速度方向(即投射方向):另外铅球、标枪和铁饼要尽量增大初始速度的大小,而足球射门和篮球投篮时.又必须控制好初始速度的大小和方向。
抛体运动是一种复杂的机械运动,在理想情况下(即不考虑空气阻力),斜上抛运动物体的初始速度大小一定时,当初始速度方向与水平方向成45度角时,运动物体有最大射程(即抛体的水平方向距离),此距离正是铅球、标枪和铁饼要计算的成绩°由于抛体的初始速度受运动员的体能限制,所以,在一定程度上,运动员的成绩好坏决定于抛体的初始速度方向°实际上,任何运动的物体在空气中均要受到阻力,
所以,要提高运动员的成绩,运动员需根据自己的经验.使初始速度的方向与水平方向略大于45度角投射c
四、物理中的“惯性”
任何物休都具有惯性,运动若的物体具有继续保持运动状态的性质。
惯性即有利,又有害。
运动员在运动场上进行的各种项目的运动,有时要利用惯性,有时又要防止惯性,才能提高运动成绩和竞技水平。
例如,跳高、跳远及标枪运动中的助跑过程,且标枪运动员在投标枪之前,手臂要尽量向后伸摆,这些必要的动作都是为了利用惯性°而运动员在施到百米冲刺的终点时,不能及时停下来,还得逐渐减速地跑一段距离:篮球运动员在进行三步上篮时,投篮的一瞬间不能正对篮环中心,否则由于惯性,反而投不中,而是要落后篮环中心一点投球,这些都是为了防止惯性。
还有投掷铁饼的选手,为r提高比赛成绩,在规定的圆圈内做加速旋转动作,目的是为了增大铁饼出手时的初始速度:而铁饼出手后,为了确保自己不离开圆圈内,还得继续转几I乳所以,铁饼选手为。
获得好的成绩,即要利用惯性,又要防止惯性。
五、物理中的“功能原理”及“机械能守恒”
所谓功能原理,就是外力对物体做的功等于物体机械能的增加I。
、,没有外力对物体做功时.物体机械能不变,即机械能守恒。
机械能又包括动能、重力势能和弹性势能,且物体在运动过程中,动能、重力势能和弹性势能可以相互转化°例如,跳水运动员为r获得足够的高度,在起跳前,必须用力向下蹬跳板, 将跳板的弹性洛能最终转化为自己的重力势能,便于在空中做旋转动作。
在举重运动中,运动员对杠铃做的功等于增加杠铃的重力势能与增加自己的重力势能之和。
由于杠铃比较重,运动员要想获得成功,一般要经过三个阶段。
在第二个阶段中,由于杠铃增加的高度最大,运动员需做的功也最死.难度当然最大。
所以,我们经常看到,运动员在完成第二个阶段的瞬间,都要将双脚前后分开,这样做的目的是为r降低一点高度,减少一点重力势能的增虽,便于杠铃能举过自己的头顶°为。
质利地完成第三个阶段.双脚也不能分得太开,否则会增加最后阶段的难度。
还有跳高、跳远以及各种投掷体的运动等都含有此方面的知识内容。
六、物理中的“冲量”及“转动惯量"
物理学里的冲量等于作用在物体上的力与力的作用时间的乘积,作用在物体上的冲量等于动量的改变量。
当动量的改变量一定时,如果力的作用时间越长,则作用在物体上的力越小。
冲量定律的这种特例在各种体育器械及运动中的应用非常普遍。
例如,供跳高运动员若地用的海绵垫、供跳远运动员着地用的沙坑,都是为r延长力的作用时间,从而减小运动员者地时受到的作用力,确保运动员若地时不受损伤。
还有在篮球运动中,运动员在接己方队员传过来的篮球时,双手往往要伸前顺若来球的运动方向后移接球。
这样做的目的也是为了延长篮球对手的作用力时间,从而减小篮球对手的作用力大小,便于毯稳地接住飞来的篮球。
我们还经常看到.在比赛场上,有经验的运动员在场地上拌倒时,会顺势翻滚来延长着地的时间,从而减小地而对人体的作用力。
在羽毛球、乒乓球、网球、排球等运动中,选手们在击球的瞬间,球的运动情况都含有冲量定律的内容。
如果物体受到某一力矩的作用,此物体就会围绕某一固定轴旋转。
当转动惯虽一定时,力矩越大,则旋转越强烈。
例如,乒乓球选手拉的孤闷球,都是设法引用球拍给乒乓球以摩擦,对乒乓球施一力矩的作用而产生的。
现在.国际乒联决定,改“小球”为“大球”后,由于“大球”的转动惯最比“小球”的转动惯量大,所以,球的旋转没有以前强烈。
还有足球运动员射门和排球运动员发球时.为「造成对方球员接球的难度,都会适当地给球一力矩的作用,使球产生旋转。
还有铁饼选手在投掷的一瞬间,也要给铁饼一力矩的作用,使铁饼在空中加速旋转,从而提高比赛成绩。
如果正在旋转着的物体,不受力矩的作用,则转动惯量与角加速度的乘积是一恒量。
旋转着的物体转动惯最增大时,物体的旋转就会减慢。
跳水运动员落水和体操运动员若地时,都要利用到这方面的知识。
例为,他们在空中都要进行旋转动作,跳水运动员要获得最佳的落水效果•落水时,必须尽量避免旋转:而体操运动员要保证者地时立稳,也要避免旋转.所以,他们在入水和若地的瞬间,都采用伸长四肢的办法来增大身体的转动惯量,从而减小旋转速度。
确保顺利完成比赛。
在现代的教育、教学观念中,要求学生掌握科学文化知识的同时,特别重视培养学生对知识的应用能力,将单一型人材的培养转化为夏合型人材的培养,使得教学中注重了学科之间的渗透。
在近年来的高考、
中考命超"|中,也经常出现在学科之间相联系的试题.物理与务学科知识相联系的试题也时有出现。
并且在全民健身计划大力实施的今天,娱乐休育、终身体育的需要,运动者掌握好科学文化知识就显得更为重要C如果休育爱好者、体育训练者以及在校学生将掌握好的物理知识应用于实际的各项运动中,必会快速地掌握正确的动作和要领,取得好的运动成绩,同时也会大大激发他们的运动热情和学习兴趣,最终达到培养创造性复合型人材和增强全体国民的体能的目标要求。