第六届华杯赛复赛试题
- 格式:doc
- 大小:42.50 KB
- 文档页数:6
华杯复赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 全国青少年数学奥林匹克竞赛C. 华罗庚数学竞赛D. 中国数学华杯赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象通常是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的复赛通常在什么时间举行?A. 春季B. 夏季C. 秋季D. 冬季答案:C二、填空题(每题5分,共20分)5. 华杯赛的复赛通常采用_________形式进行。
答案:笔试6. 华杯赛的复赛题目通常包括_________和_________两部分。
答案:选择题、解答题7. 华杯赛的复赛成绩优异者有机会获得_________资格。
答案:决赛8. 华杯赛的复赛试卷通常由_________和_________两部分组成。
答案:试题、答题卡三、解答题(每题10分,共30分)9. 已知函数f(x) = 2x^2 - 3x + 1,求f(1)的值。
答案:f(1) = 2(1)^2 - 3(1) + 1 = 010. 一个数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
求数列的第10项。
答案:14411. 已知一个等差数列的前三项分别为2, 5, 8,求这个数列的第10项。
答案:29四、证明题(每题10分,共30分)12. 证明:对于任意正整数n,n^2 - 1总是可以被24整除。
答案:略13. 证明:对于任意实数x,y,有(x+y)^2 ≤ 2(x^2 + y^2)。
答案:略14. 证明:对于任意正整数n,n^3 - n可以被6整除。
答案:略。
长沙华杯赛试题及答案一、选择题1. 下列哪个选项是华杯赛的举办地?A. 北京B. 上海C. 长沙D. 广州答案:C2. 华杯赛通常在每年哪个季节举行?A. 春季B. 夏季C. 秋季D. 冬季答案:C二、填空题1. 华杯赛的全称是________。
答案:长沙华杯数学竞赛2. 华杯赛的参赛对象主要是________。
答案:中学生三、解答题1. 已知一个数列的前三项为1, 2, 4,且每一项都是前一项的两倍加1,求数列的第n项。
答案:数列的第n项为2^(n-1)。
2. 一个圆的直径是10cm,求圆的面积。
答案:圆的面积为78.5平方厘米。
四、证明题1. 证明:如果一个三角形的两边之和大于第三边,则这个三角形是锐角三角形。
答案:假设三角形的三边分别为a、b、c,且a+b>c。
根据三角形的内角和定理,三角形的三个内角之和为180度。
由于a+b>c,所以三角形的任意两边之和都大于第三边,这意味着三角形的三个内角都小于90度,因此这个三角形是锐角三角形。
五、应用题1. 一个班级有50名学生,其中30名学生喜欢数学,20名学生喜欢英语,10名学生既喜欢数学又喜欢英语。
问至少有多少名学生喜欢数学或英语?答案:至少有30名学生喜欢数学或英语。
六、计算题1. 计算:(2^3 + 3^2) * 4 - 5答案:(8 + 9) * 4 - 5 = 17 * 4 - 5 = 68 - 5 = 63七、逻辑推理题1. 如果今天是星期一,那么明天是星期几?答案:星期二八、创新题1. 请设计一个简单的数学游戏,要求游戏规则简单明了,且能锻炼逻辑思维能力。
答案:设计一个“24点”游戏,游戏规则是使用四个数字(每个数字只能使用一次),通过加、减、乘、除四种运算,得到结果24。
例如:使用数字2、3、4、6,可以计算(6/(1-(2/3)))*4=24。
以上是长沙华杯赛试题及答案的示例排版。
华杯赛数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. 42. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π4. 一个数的立方是-64,这个数是:A. -4B. 4C. -2D. 25. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是6. 以下哪个数是无理数?A. 3.1416B. 0.33333(无限循环)C. πD. 根号2二、填空题(每题5分,共20分)1. 一个数的平方是25,那么这个数是______。
2. 一个数的倒数是1/4,那么这个数是______。
3. 如果一个数的立方根是2,那么这个数是______。
4. 一个数的绝对值是10,那么这个数可能是______。
三、解答题(每题10分,共50分)1. 一个长方体的长、宽和高分别是8厘米、6厘米和5厘米,求这个长方体的体积。
2. 一个圆的半径是7厘米,求这个圆的周长和面积。
3. 一个直角三角形的两条直角边分别为9厘米和12厘米,求这个直角三角形的斜边长度。
4. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的第10项。
答案一、选择题1. A2. A3. B4. A5. C6. C二、填空题1. ±52. 43. 84. ±10三、解答题1. 长方体的体积 = 长× 宽× 高= 8 × 6 × 5 = 240 立方厘米。
2. 圆的周长= 2πr = 2 × π × 7 = 14π 厘米,面积= πr² = π × 7² = 49π 平方厘米。
3. 直角三角形的斜边长度= √(a² + b²) = √(9² + 12²) =√(81 + 144) = √225 = 15 厘米。
第六届“华杯赛”初一组第二试决赛试题1. 代数式tvx tuy swx suz rwy ruz -++--中,r ,s ,t ,u ,v ,w ,x ,y ,z 可以分别取1或-1,( i)证明该代数式的值都是偶数;(ii )求该代数式所能取到的最大值.2. 用1,2,…99,100共一百个数排成一个数列: 1a ,2a , …,99a , 100a已知数列中第6个是606=a ,第94个是9894=a ,其他的i a 不知是什么数,如果相邻两个数1+>i i a a ,就将它们交换位置,如此操作直到左边的数都小于右边的数为止,请回答最少实行了多少次交换?最多实行了多少次交换?3.将10到40之间的质数填入下图的圆圈中,使得三组由“→”所连的四个数的和相等,如果把和数相同的填法看成同一类填法,请说明一共有多少类填法?并画图填入你的填法.4.某工厂生产一批玩具,形状为圆环,环上均匀分布安装12个小球,其中3个为红球,9个是白球,如右图所示.若两个环可以圆心对圆心,红球对红球,白球对白球叠放在一起,我们说它们属于同一规格.问该工厂生产的这类玩具一共可以有多少种不同的规格?5.在1到20之间求8个质数(不一定不同),使它们的平方和比它们的乘积的4倍小36294.第六届“华杯赛”初一组第二试决赛试题答案1. 解:(i )该代数式共有6项,每项取值都只能是奇数(1或-1),其和为偶数.(ii )该式≤6,若等于6,则第1、4、5项的值都是1,第2、3、6项的值都是-1,六项之积是-1.但是,这六项之积是222222222z y x w v u t s r ,不可能是-1,因此最大值不能是6.取1===t s r ,1-=u ,1==w v ,1-==y x ,z=1,该式的值为4,所以该式的最大值是4. 2.58;4825 解:数列中任一个数交换完成时,它一定与它的右边并且比它小的每一个数都交换一次. 数列最好的排列(交换次数最少)是:1,2,3,4,5,60,6,7,…,58,59,61,…92,93,98,94,95,96,97,99,10060与6,7,…,58,59依次交换54次,98与94,95,96,97依次交换4次,共交换58次.数列最差的排列(交换次数最多)是:100,99,97,96,95,60,94,…,…,8,7,98,6,5,4,3,2,1100需要交换99次,99交换98次,98交换6次,97交换96次,96交换95次,95交换94次,94交换92次,93交换91交,…,61交换59次,60交换59次,59交换58,58交换57次,57交换56次,…,2交换1次;共交换 1+2+…+57+58+59+59+60+…+92+94+95+96+6+98+99 =(1+2+3+…+97+98+99)+59-93-97+6=4825(次) 答:最少交换的次数是58次,最多时是4825次. 3.解:将10至40之间的8个质数从小到大排列成: 11 13 17 19 23 29 31 37 (*) 或者排列为:11 13 17 1931 23 37 29 ( * * )这8个质数的和是3的倍数,所以根据题目要求,填入图中最左和最右两个圆圈的两个质数之和也是3的倍数,从(*)去掉这两个质数后,余下的6个质数从小到大排列为:654321a a a a a a <<<<<则应当有 435261a a a a a a +=+=+ 当然,这些和的个位应该相等.两个质数和的个位是偶数,我们分别按个位等于8,6,4,2,0来判断如何得到正确解答.①当个位为8时,从(**)可以判断应该选出13和23填在图的左边和右边的圆圈,余下11 17 19 29 31 37则有解答见下图.②当个位为6时,从(**)我们可以判断8个质数中应该去掉11和31,余下13 17 19 23 29 37因为13+37=50,个位不是6,因此不能给出符合要求的填法.③当个位为4时,从(* *)我们可以判断8个质数中应该去掉19和29,余下11 13 17 31 37因为11+37=48,个位不是4,不能给出符合要求的填法.④当个位为2时,8个质数中应该去掉17和37,余下1113 17 23 29 31则有解答见下图⑤当个位为0时,8个质数中应该去掉11,19,或31,29,或13,17,或23,27,类似于②和③的讨论,对于这四种情况都不能给出符合要求的填法.4.55解:如右图,我们假定12个球都为白色,要将其中三个涂成红色,通过旋转将A处的球保证为红色.看有多少种涂法.由A开始顺时针方向标数,A处的球标0,其他的球顺序标为1,2,…,10,11.三红球所在位置标的数记为(0,i,j),0<i<j.是然,j可以取值2,3,4,5,6,7,8,9,10,11.当j=2时,i只能取值1,只有一种取法;当j=3时,i可以取值1,2共2种;当j =4时, i 可以取值1,2,3共3种……;当j =11时,i 可以取值1,2,…,10共10种取法.因此,当保证位于A 处的球是红色时,共有:1+2+3++10=55种涂法.5.2,2,2,2,2,2,11,13 解:设这8个质数是1212+<====k k x x x x ≤…7x ≤8x , 0≤k ≤7令28212822214x x k x x x S k +++=+++=+ ,818212x x x x x P k k ⨯⨯⨯==+ ,则36294)()(442821=++--=-+x x k P S P k (1)可以判断:(i )k 不能为奇数,这是因为,k 为奇数时,(1)的左边是奇数,而右边是偶数; (ii )k 不能是0,这是因为,奇数的平方除以8余1,S 是8的倍数,也是4的倍数,(1)的左边是4倍数,而右边不是;所以k ≥2且k 为偶数.282136294)(4x x k P k +++=-+ (2)(2)的左边为8的倍数,36294除以8余6, 2821x x k +++ 除以8余(8-k ),所以, 6+(8-k ),即k =6.我们有:即 28278736318256x x x x ++= (3) 由于7x ,8x 是1到20之间的质数,183322=+≤2827x x +≤722191922=+ 所以,36336≤87256x x ≤37040141.9≤87x x ≤144.7 142≤87x x ≤144若7x ≤7,则8x ≥20(2)与题意矛盾,所以,7x ≥11. 将117=x 代入(3),288364392816x x +=≤3680019364392=+ 所以, 8x ≤13. 将117=x , 138=x 代入(3),等式成立. 答:这8个质数是2,2,2,2,2,2,2,11,13。
华杯赛试题及答案1. 选择题1)以下哪个不属于华杯赛的参赛项目?A. 数学竞赛B. 语言表达C. 程序设计D. 跳高比赛2)华杯赛是哪个国家的赛事?A. 中国B. 美国C. 日本D. 英国3)以下哪个城市曾举办过华杯赛?A. 北京B. 上海C. 广州D. 香港4)华杯赛是以什么形式进行的?A. 线下比赛B. 线上比赛C. 线下与线上结合D. 每个参赛者可以自行选择5)华杯赛设立了哪些奖项?A. 一等奖、二等奖、三等奖B. 冠军奖杯、亚军奖杯、季军奖杯C. 最佳表现奖、创新奖、团队合作奖D. 所有参赛者都会获得奖励2. 填空题1)华杯赛是每年________举办一次。
2)参赛者需要先进行________报名,通过审核后方可参加比赛。
3)华杯赛的目的是________学生综合能力的培养。
4)参赛者需要在规定的时间内完成________项目的考核。
5)华杯赛的题目涵盖了多个学科,要求参赛者具备________知识。
3. 简答题请简要回答以下问题:1)你为什么想参加华杯赛?2)你认为参加华杯赛对你的个人发展有何帮助?3)你的学习方法和备考策略是什么?4)在华杯赛中,你最想获得哪个奖项,并为之付出什么努力?答案:1. 选择题1)D2)A3)B4)C5)C2. 填空题1)一次2)在线上3)促进4)指定5)跨学科3. 简答题1)参加华杯赛可以锻炼自己的能力,提高学科知识水平,同时还能通过与其他优秀学生交流,拓宽视野。
2)参加华杯赛可以提升个人的学术竞争力和综合素质,对今后的升学和就业都有积极的影响。
3)我的学习方法是注重理论与实践相结合,善于总结归纳,通过解题训练提高自己的应试能力;备考策略是提前规划时间,有针对性地复习重点知识,并进行模拟考试。
4)我最想获得的奖项是最佳表现奖,我会通过充分准备,认真完成每个项目的考核,展现出自己的才能和潜力,努力争取取得好成绩。
华杯赛试题及答案到此结束。
请注意按照华杯赛的要求认真准备,祝你取得优异的成绩!。
小学华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 华罗庚数学竞赛B. 华罗庚杯数学竞赛C. 华杯数学竞赛D. 华罗庚数学邀请赛答案:B2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象通常是:A. 小学生B. 初中生C. 高中生D. 大学生答案:A4. 华杯赛的试题类型包括:A. 选择题B. 填空题C. 计算题D. 所有以上答案:D二、填空题(每题5分,共20分)1. 华杯赛的试题通常由_________组成。
答案:选择题、填空题、解答题2. 华杯赛的举办地点通常在_________。
答案:学校或指定的考试中心3. 华杯赛的参赛者需要具备_________。
答案:数学竞赛的基本知识和解题技巧4. 华杯赛的获奖者通常会获得_________。
答案:证书和奖品三、解答题(每题10分,共60分)1. 已知一个数列的前三项为1,2,4,求第四项的值。
答案:82. 一个长方形的长是宽的两倍,如果宽增加3厘米,长减少2厘米,面积不变,求原来长方形的长和宽。
答案:设原来长方形的宽为x厘米,则长为2x厘米。
根据题意得方程:x(2x-2) = (x+3)(2x-2-3),解得x=6,所以原来长方形的长为12厘米,宽为6厘米。
3. 甲乙两人同时从A地出发,甲的速度是乙的1.5倍,如果甲到达B地后立即返回,与乙在C地相遇,求甲乙两人的速度比。
答案:设乙的速度为v,则甲的速度为1.5v。
设A、B两地之间的距离为d,则甲从A到B再返回C的总距离为2d,乙从A到C的距离为d。
由于甲乙两人相遇,所以他们所用的时间相同,即2d/1.5v = d/v,解得v = 2d/3,所以甲乙两人的速度比为1.5:1。
4. 一个水池有甲乙两个进水管,甲管单独注满水池需要4小时,乙管单独注满水池需要6小时。
如果两管同时开启,需要多少时间才能注满水池?答案:设水池的容量为1,甲管的注水速度为1/4,乙管的注水速度为1/6。
一、填空题(每题10分,共80分)1、计算:123456+234567+345678+456789+567901+679012+790123+901234= __________.2、国庆节接受检阅的一列车队共52辆,每辆车长4米,每相邻两辆车相隔6米,车队每分钟行驶105米。
这列车队要通过536米长的检阅场地,要分钟。
3、把长2厘米宽1厘米的长方形如图(1)一层、两层、三层地摆下去,摆完第十五层,这个图形的周长是厘米。
4、北京某四合院子正好是个边长10米的正方形,在院子中央修了一条宽2米的“十字形”甬路,如图(2)这条“十字形”甬路的面积是平方米。
图(1)图(2)5、哥哥和弟弟共有故事书120本,哥哥的故事书本数是弟弟的3倍,哥哥有故事书本,弟弟有故事书本.6、甲、乙两个粮仓共存粮320吨,后来从甲粮仓运出40吨,给乙粮仓运进20吨,这时甲仓存粮是乙仓的2倍,甲、乙两个粮仓原来各存粮分别为吨和吨.7、今年爸爸的年龄是小芳年龄的3倍,几年前,爸爸的年龄是小芳年龄的5倍,再几年前,爸爸的年龄是小芳年龄的7倍.他们的年龄差在20岁至30岁之间,爸爸今年岁.8、篮中有许多李子,如果将其中的一半又1个给第一个人,将余下的一半又2个给第二个人,然后将剩下的一半又3个给第三个人,篮中刚好一个也不剩,篮中原来有个李子.二、解答题(共70分,要求写出解答过程)9、如果小方给小明一个玻璃球,两人的玻璃球数相等;如果小明给小方一个玻璃球,则小方的玻璃球数就是小明的两倍.问小明、小方原来各有多少个玻璃球?(本题15分)10、原计划有420块砖让若干学生搬运,每人运砖一样多,实际增加了一个学生,这样每个学生就比原计划少搬2块.问:原有学生多少人?(本题15分)11、把99粒棋子放在两种型号的17个盒子里,每个大盒子里放12粒,每个小盒子里放5粒,恰好放完.问大、小盒子各多少个?(本题20分)12、有A、B、C、D、E五个小足球队参加足球比赛,到现在为止,A队赛了4场,B队赛了3场,C队赛了2场,D队赛了1场.那么E队赛了几场?(本题20分)参考答案一、填空(每题10分,共80分)注:第5题、6题,每空5分.填空题参考详解:1. 4098760解:123456+234567+345678+456789+567901+679012+790123+901234=(123456+901234)+(234567+790123)+(345678+679012)+(456789+567901)=1024690+1024690+1024690+1024690=1024690×4=40987602.10解:因为车队行驶的路程等于检阅场地的长度与车队长度的和。
华杯赛复赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是计算机编程语言?A. PythonB. JavaC. C++D. Excel答案:D2. 光年是哪种单位?A. 长度B. 时间C. 速度D. 质量答案:A3. 以下哪个是联合国的官方语言?A. 英语B. 法语C. 西班牙语D. 所有选项答案:D4. 下列哪个国家不是G8成员国?A. 美国B. 德国C. 印度D. 法国答案:C二、填空题(每题5分,共20分)1. 地球的赤道周长约为________公里。
答案:400752. 世界上最长的河流是________。
答案:尼罗河3. 牛顿的第二运动定律表达式为________。
答案:F=ma4. 光的三原色是红、绿、________。
答案:蓝三、简答题(每题10分,共30分)1. 请简述什么是相对论?答案:相对论是物理学中描述物体在高速运动时,时间和空间如何受到相对速度影响的理论。
2. 解释什么是光合作用?答案:光合作用是植物、藻类和某些细菌利用阳光将二氧化碳和水转化为葡萄糖和氧气的过程。
3. 什么是基因编辑技术?答案:基因编辑技术是一种允许科学家对生物体的DNA进行精确修改的技术,如CRISPR-Cas9。
四、计算题(每题10分,共30分)1. 一个物体从高度为100米的塔上自由落下,忽略空气阻力,求物体落地时的速度。
答案:v = √(2gh) = √(2*9.8*100) ≈ 44.27 m/s2. 一个电阻为10欧姆的电阻器通过电流1安培,求电阻器两端的电压。
答案:V = IR = 1*10 = 10伏特3. 一个圆的半径为5厘米,求其面积。
答案:A = πr² = π*(5)² = 78.54 cm²。
华杯赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于它本身,这个数可能是?A. 0B. 1C. 2D. 3答案:A、B3. 如果一个三角形的两边长分别为3和4,那么第三边的长度x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 2 < x < 6答案:C4. 一个圆的半径是2,那么它的周长是多少?A. 4πB. 6πC. 8πD. 10π答案:C5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:无正确选项,因为所有选项都可以化简。
6. 如果一个数列的前三项是2, 4, 6,那么第四项是多少?A. 8B. 10C. 12D. 14答案:A7. 一个长方体的长、宽、高分别是3cm、4cm、5cm,那么它的体积是多少?A. 60cm³B. 120cm³C. 180cm³D. 240cm³答案:A8. 一个等差数列的前三项是2, 5, 8,那么第六项是多少?A. 14B. 15C. 16D. 17答案:B9. 一个等比数列的前三项是2, 6, 18,那么第四项是多少?A. 54B. 42C. 24D. 12答案:A10. 一个数的立方等于它本身,这个数可能是?A. 0B. 1C. -1D. 以上都是答案:D二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 如果一个数的绝对值是4,那么这个数可能是________或________。
答案:4或-413. 一个圆的直径是10,那么它的面积是________。
答案:25π14. 如果一个三角形的内角和是180度,其中一个角是90度,另外两个角的度数之和是________。
2021年“华杯赛”复赛小学组试题及详解1. 原式=(2+4+6+8)-(1/2+1/4+1/6+1/8)=20-(1+1/24)=18+23/24。
2. 8个人用30天完成了工程的1/3,那么8个人完成剩余工程(2/3)应该用60天,增加4个人变成12个,应该用60÷12×8=40天,共用70天。
3. 甲乙的速度比为6:5,乙提速后的速度为5×1.6=8份。
假设乙耽误的时间也在以5的速度前进,则乙总共可以前进全程的7/6。
也就是说相当于乙在用甲的速度的5/6和8/6两种速度来骑甲的7/6的路程,根据十字相乘法,两种速度所用的时间之比为1:2。
也就是说,乙用5/6的速度行驶了5/6×1/3=5/18的路程,那么全程的5/18-1/6=1/9就是5千米,全程45千米。
5. △FAB是等边三角形,所以弧AF是六分之一圆,同理弧GC也是六分之一圆,则弧GF是1/6+1/6-1/4=1/12圆,四条弧是1/3圆,长度为2×π×1÷3=2.094。
6. 每种先都减去1本,剩余40-2-5-11=22元。
如果再买2本11元的,恰好用完,1种方法;如果再买1本11元的,剩余11元,可以买1本5元和3本2元,1种方法;如果不再买11元的,22元最多买4本5元的,5元的本数可以是4,2,0,3种方法。
共有1+1+3=5种方法。
7. 该几何体是一个四棱锥,底面积为20×20=400,高为20,所以体积为400×20÷3=8000/3(立方厘米)。
8. 大于11的质数13,17,19都只能作为分母为1的数的分母,如果它们作为同一个分数的分子和分母,则剩余的10个可以都是整数。
下面举例说明可以只有一个不是整数:13/1 22/11 20/10 18/9 16/8 14/7 15/5 21/3 4/2 12/6 19/17共9个是整数。
第六届华杯赛复赛试题
1、 计算:11111111111111?24610359⎛
⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++---= ⎪⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
2、 一套绞盘和一组滑轮形成一个
提升机构,如图所示。
其中盘A
直径为10厘米,B 直径为40厘
米,C 直径为20厘米。
问:A 顺
时针方向转动一周时,重物上升
多少厘米?(取π=3.14) (设在
整个过程中,绳索与轮盘之间都
不产生相对的滑动)。
3、 ()()199711995.51993.51998199919981999
-÷⨯÷保留三位小数
4、 用一平面去截一个立方体,得到一个矩形的截口,而把立方体分为两部分,问:这两部分各是由几个面围出的?
5、右图是一卷紧紧缠绕在一起的牛皮纸,纸卷直径为20
0.4厘米。
试求这卷纸展开后大约有多少?
6、李师傅加工一批零件,如果每天做50个,要比原计划晚8天完成;如果每天做60个,
就可以提前5天完成。
这批零件共有多少个?
7、某商店某一个月销售A、B、C、D四种商品的情况如下:A.600件,B.50件,C.40件,
D.2件。
今A、B、C、D四种商品的毛利依次为9%、12%、20%、30%,问:这个月销售的
的四种商品的平均毛利是多少?
8、问:1357991
246810010
⨯⨯⨯⨯⨯
与相比,哪个更大?为什么?
9、设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行的
速度的3倍。
现甲自A地到B地;乙、丙自B地到A地。
双方同时出发。
出发时,甲、乙为步行,丙骑车。
途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己改为步行,三人仍按各自原有方向继续前进。
问:三人中谁最先到达自己的目的地?谁最后到达自己的目的地?
10、在某市举行的一次乒乓球比赛中,有6名选手参赛。
其中专业选手与业余选手各3
名。
比赛采用单循环方式进行,就是说每两名选手都要比赛一场。
为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分;每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分。
现问:一位业余选手至少要胜几场才能保证他必定进入前三名?
11、①下面的(a)、(b)、(c)、(d)为四个平面图。
数一数,每个平面图各有多少个顶点?
多少条边?它们分别围成了多少个区域?请将结果填入下表(按填好的样子做)。
②观察上表,推断一个平面图的顶点数、边数、区域数之间有什么关系?
③现已知某个平面图有999个顶点、且围成了999个区域,试根据以上关系确定这个图
有多少条边。
(d)
(c)
(b)
(a)
12、某公共汽车线路中间有10个站。
车有快车及慢车两种。
快车的车速是慢车的车速
的1.2倍。
慢车每站都,快车则只停靠中间1个站。
每站停留时间都是3分钟。
当某次慢车发出40分钟后,快车从同一始发站开出,两车恰好同时到达终点。
问:快车从起点到终点共需用多少时间?
13、下面是一个由数字组成的三角
形,试研究它的组成规律,从而确定
其中的x。
*
*
*
*
*
*
*X
16
32
46
56
61
61
16
16
1014
5
2
4
5
5
2
2
1
1
1
1
1
14、 有5堆苹果。
较小的3堆平均有18个苹果。
较大的2堆,苹果数之差为5个。
又,
较大的3堆平均有26个苹果,较小的2堆,苹果数之差为7个。
最大堆与最小堆平均有22个苹果。
问:每堆各有多少个苹果?
15、 能否在下面的方括号内填入加号或减号,使得下面的两个不等式都成立: 111
110<12341997
16、 甲、乙、丙三个班向希望工程捐赠图书,已知甲班有1人捐6册,有2人各捐7
册,其余都各捐11册;乙班有1人捐6册,有3人各捐8册,其余都各捐10册;丙班有2人各捐4册,有6人各捐7册,其余都各捐9册,已知甲班捐书总数比乙班多28册,乙班比丙班多101册,各班捐书总数在400册与550册之间,问各班各有多少人?
17、当今世界上有一种近乎耸人听闻的悲观论调:“到2030年中国将不能养活自己。
”
对此,中国政府领导人及大批学者都予以反驳。
事实上,目前中国农业在占全球7%的耕地上养活着世界人口的22%,而且在1984年曾达到年人均粮食400千克,使粮食净进口量变为负值。
到1994年中国粮食总产量达到了4500亿千克,年人均粮食357千克,仅需净进口国内消费量的5%,据估测,中国现有耕地1.39亿公顷,其中约有一半为山地,丘陵、平原地区平均粮食产量已超过4000千克/公顷。
如果按现有的潜力,到2030年使平原地区产量提高七成,让山地、丘陵地区的产量增加二成是很有把握的,同时在本世纪末把中国人口控制在12.7亿以内,且在下一个世纪保持人口自然年增长率低于9‰或每10年人口自然增长不超过10%是可能办到的,请利用以上资料,论证:“在2030年中国完全能养活自己。
”。