复变函数论第三版课后习题标准答案
- 格式:doc
- 大小:504.50 KB
- 文档页数:12
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3iz e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
习题1第一章 复数及复变函数1.11222z ==-求|z|,Argz 解:1232122=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=zArgz=arctan 212-+2k π=23k ππ+-, ,2,1,0±±=k2.211i z +=,=2z i -3,试用指数形式表示2121z z z z 及解:211i z +=i e 4π==2z i -3i e62π-=所以21z z =i e62π-ie 4πie122π-=21z z ii i ie e e e 125)64(6421212πππππ===+- 3. 解二项方程440z a += )0(>a 解 由440z a +=得44z a =- 那么二次方程的根为1k w a = 〔k=0,1,2,3〕 =24k i ea ππ+⋅〔k=0,1,2,3〕0w =4i ea π⋅=(1+i)23441(1)2i i a w ea ea i πππ+⋅===-+542(1)2i a w ea i π==--743(1)2i a w ea i π==-4 .设1z 、2z 是两个复数,求证:),Re(2||||||212221221z z z z z z -+=-证明:()()2121221z z z z z z --=-()2122212121222112212221Re 2z z z z z z z z z z z z z z z z -+=--+=---=5. 设123z ,z ,z 三点适合条件:1230z z z ++=及1231z z z ===试证明123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点。
证明:设111z x iy =+,222z x iy =+,333z x iy =+因为1230z z z ++=∴1230x x x ++=,1230y y y ++= ∴123x x x =--,123y y y =--又因为1231z z z ===∴三点123z ,z ,z 在单位圆周上,且有222222112233x y x y x y +=+=+而()()2222112323x y x x y y +=+=+()()2223231x x y y ∴+++=()232321x x y y ∴+=-同理=+)(22121y y x x ()()131********x x y y x x y y +=+=-可知()()()()()()222222121223231313x x y y x x y y x x y y -+-=-+-=-+-即122313z z z z z z -=-=-123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点得证。
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=± 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--=== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根()()132π+π2ππcos πisin πcos isin 0,1,233k k k ++=+=∴1ππ1cosisin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值: (1)5)i -(2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(56解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)z i +=由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。
第一章习题解答〔一〕1.设z =z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案————————————————————————————————作者:————————————————————————————————日期:第一章习题解答(一)1.设132i z -=,求z 及Arcz 。
解:由于3132i i z e π--== 所以1z =,2,0,1,3Arcz k k ππ=-+=±L 。
2.设121,312i z z +==-,试用指数形式表示12z z 及12z z 。
解:由于64121,322i i iz e z i e ππ-+===-= 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:1244444(),0,1,2,3k ii za a e aek πππ+=-===。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
6.下列关系表示点z 的轨迹的图形是什么?它是不是区域。
(1) 1212,()z z z z z z -=-≠; 解:点z 的轨迹是1z与2z 两点连线的中垂线,不是区域。
(2)4z z ≤-; 解:令z x yi =+由(4)x yi x yi +≤-+,即2222(4)x y x y +≤-+,得2x ≤ 故点z 的轨迹是以直线2x =为边界的左半平面(包括直线2x =);不是区域。
(3)111z z -<+ 解:令z x yi =+,由11z z -<+,得22(1)(1)x x -<+,即0x >; 故点z 的轨迹是以虚轴为边界的右半平面(不包括虚轴);是区域。
(4)0arg(1),2Re 34z z π<-<≤≤且;解:令z x yi =+由0arg(1)42Re 3z z π⎧<-<⎪⎨⎪≤≤⎩,得0arg1423y x x π⎧<<⎪-⎨⎪≤≤⎩,即0123y x x <<-⎧⎨≤≤⎩ 故点z 的轨迹是以直线2,3,0,1x x y y x ====-为边界的梯形(包括直线2,3x x ==;不包括直线0,1y y x ==-);不是区域。
(5)2,1z z >>且-3; 解:点z 的轨迹是以原点为心,2为半径,及以3z =为心,以1为半径的两闭圆外部,是区域。
(6)Im 1,2z z ><且; 解:点z 的轨迹是位于直线Im 1z =的上方(不包括直线Im 1z =),且在以原点为心,2为半径的圆内部分(不包括直线圆弧);是区域。
(7)2,0arg 4z z π<<<且;解:点z 的轨迹是以正实轴、射线arg 4z π=及圆弧1z =为边界的扇形(不包括边界),是区域。
(8)131,2222i z z i ->->且 解:令z x yi =+由1223122i z z i ⎧->⎪⎪⎨⎪->⎪⎩,得2211()2431()24x y x y ⎧+->⎪⎪⎨⎪+->⎪⎩ 故点z 的轨迹是两个闭圆221131(),()2424xy x y +-=+-=的外部,是区域。
7.证明:z 平面上的直线方程可以写成C z a z a =+(a 是非零复常数,C 是实常数) 证 设直角坐标系的平面方程为Ax By C +=将11Re (),Im ()22x z z z y z z z i==+==-代入,得C z B A z B A =-+-)i (21)i (21令)i (21B A a +=,则)i (21B A a -=,上式即为C z a z a =+。
反之:将,z x yi z x yi =+=-,代入C z a z a =+ 得()()a a x ia ia y c ++-= 则有Ax By C +=;即为一般直线方程。
8.证明:z 平面上的圆周可以写成0.Azz z z c ββ+++=其中A 、C 为实数,0,A β≠为复数,且2AC β>。
证明:设圆方程为22()0A x y Bx Dy C ++++=其中0,A ≠当224B D AC +>时表实圆;将2211,(),()22x y zz x z z y z z i+==+=-代入,得 11()()022Azz B Di z B Di z c +-+++=即0.Azz z z c ββ+++= 其中11(),()22B Di B Di ββ=+=- 且22211()444B D AC AC β=+>•=;反之:令,z x yi a bi β=+=+代入20()Azz z z c AC βββ+++=>得22()0,A x y Bx Dy C ++++=其中2,2B a B b == 即为圆方程。
10.求下列方程(t 是实参数)给出的曲线。
(1)t zi)1(+=; (2)t b t a z sin i cos +=;(3)t t z i+=; (4)22i t t z +=,解(1)⎩⎨⎧∞<<-∞==⇔+=+=t t y t x t y x z ,)i 1(i 。
即直线x y =。
(2)π20,sin cos sin i cos i ≤<⎩⎨⎧==⇔+=+=t t b y ta x tb t a y x z ,即为椭圆12222=+b y a x ;(3)⎪⎩⎪⎨⎧==⇔+=+=t y t x t t y x z 1i i ,即为双曲线1=xy ; (4)⎪⎩⎪⎨⎧==⇔+=+=22221i i t y t x t t y x z ,即为双曲线1=xy 中位于第一象限中的一支。
11.函数z w 1=将z 平面上的下列曲线变成w 平面上的什么曲线()iv u w iy x z +=+=,?(1)x y =; (2)()1122=+-y x解222211y x yiy x x iy x z w +-+=+==,2222,y x y v y x x u +-=+=,可得 (1)()v y x y y x y y x x u -=+--=+=+=222222是w 平面上一直线;(2)()21211222222=+⇔=+⇔=+-y x x x y x y x ,于是21=u ,是w 平面上一平行与v 轴的直线。
13.试证)arg (arg ππ≤<-z z 在负实轴上(包括原点)不连续,除此而外在z 平面上处处连续。
证 设z z f arg )(=,因为f (0)无定义,所以f (z )在原点z =0处不连续。
当z 0为负实轴上的点时,即)0(000<=x x z ,有 ⎩⎨⎧-=⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+→→→→→ππππx y x y z y x x y xx z z arctan lim arctan lim arg lim 00000所以zz z arg lim 0→不存在,即z arg 在负实轴上不连续。
而argz 在z 平面上的其它点处的连续性显然。
14. 设00=≠z z 求证()z f 在原点处不连接。
证 由于()01lim lim lim 42062400=+=+=→→=→x x x x x z f x x xy z()21lim lim 666003=+=→=→y y y z f y yx z( ) ⎪ ⎩ ⎪ ⎨ ⎧ + = , 0, 6 2 3 y x xy z f可知极限()z fz0lim→不存在,故()z f在原点处不连接。
16. 试问函数f(z) = 1/(1 –z )在单位圆| z | < 1内是否连续?是否一致连续?【解】(1) f(z)在单位圆| z | < 1内连续.因为z在X内连续,故f(z) = 1/(1 –z )在X\{1}内连续(连续函数的四则运算),因此f(z)在单位圆| z | < 1内连续.(2) f(z)在单位圆| z | < 1内不一致连续.令z n= 1 – 1/n,w n= 1 – 1/(n + 1),n∈N+.则z n, w n都在单位圆| z | < 1内,| z n-w n | → 0,但| f(z n)-f(w n)| = | n - (n + 1) | = 1 > 0,故f(z)在单位圆| z | < 1内不一致连续.[也可以直接用实函数f(x) = 1/(1 –x )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z)在E = { z∈X | Im(z) = 0, 0 < Re(z) < 1 }上的限制即可.]17. 试证:复数列z n = x n + i y n以z0 = x0 + i y0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0为极限.【解】(⇒) 若复数列z n = x n + i y n以z0 = x0 + i y0为极限,则∀ε > 0,∃N∈N+,使得∀n > N,有| z n -z0| < ε.此时有| x n -x0| ≤ | z n -z0| < ε;| y n -y0| ≤ | z n -z0| < ε.故实数列{x n}及{y n}分别以x0及y0为极限.(⇐) 若实数列{x n}及{y n}分别以x0及y0为极限,则∀ε > 0,∃N1∈N+,使得∀n > N1,有| x n -x0| < ε/2;∃N2∈N+,使得∀n > N2,有| y n -y0| < ε/2.令N = max{N1, N2},则∀n > N,有n > N1且n > N2,故有| z n -z0| = | (x n -x0) + i (y n -y0)| ≤ | x n -x0| + | y n -y0| < ε/2 + ε/2 = ε.所以,复数列z n = x n + i y n以z0 = x0 + i y0为极限.20. 如果复数列{z n}合于lim n→∞z n = z0≠∞,证明lim n→∞ (z1 + z2 + ... + z n)/n = z0.当z0≠∞时,结论是否正确?【解】(1) ∀ε > 0,∃K∈N+,使得∀n > K,有| z n -z0| < ε/2.记M = | z1-z0 | + ... + | z K-z0 |,则当n > K时,有| (z1 + z2 + ... + z n)/n-z0 | = | (z1-z0) + (z2-z0) + ... + (z n-z0) |/n≤ ( | z1-z0 | + | z2-z0 | + ... + | z n-z0 |)/n= ( | z1-z0 | + ... + | z K-z0 |)/n + ( | z K +1-z0 | + ... + | z n-z0 |)/n≤M/n + (n-K)/n · (ε/2) ≤M/n + ε/2.因lim n→∞ (M/n) = 0,故∃L∈N+,使得∀n > L,有M/n < ε/2.令N = max{K, L},则当n > K时,有| (z1 + z2 + ... + z n)/n-z0 | ≤M/n + ε/2 < ε/2 + ε/2 = ε.所以,lim n→∞ (z1 + z2 + ... + z n)/n = z0.(2) 当z0≠∞时,结论不成立.这可由下面的反例看出.例:z n = (-1)n ·n,n∈N+.显然lim n→∞z n = ∞.但∀k∈N+,有(z1 + z2 + ... + z2k)/(2k) = 1/2,因此数列{(z1 + z2 + ... + z n)/n}不趋向于∞.[这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.]2.如果it ez=,试证明(1)nt z z nn cos 21=+; (2)nt z z n nsin i 21=-解 (1)nt e e e e z z n n sin 21intint int int =+=+=+-(2)nt e e e e z z n n sin i 21int int int int =-=-=--4.设iy x z +=,试证yx z y x +≤≤+2。