结构力学-静定结构
- 格式:ppt
- 大小:3.83 MB
- 文档页数:157
结构力学静定结构与超静定结构结构力学是研究结构承受外力后的力学性能的学科,它在建筑、机械、航空航天等领域都扮演着重要的角色。
在结构力学中,我们可以将结构分为两类:静定结构和超静定结构。
静定结构是指在确定边界条件下,结构的所有支反力以及结构内部的应力分布等参数都可以通过静力平衡方程唯一求解出来的结构。
在静定结构中,支反力的计算可以通过平衡方程解决,而应力的计算可以通过弹性力学理论求解。
以简支梁为例,简支梁的两端固定支承,中间用力作用时,通过平衡方程可以求解出支反力。
而根据梁的几何形状和荷载的大小,可以计算出梁内部的应力分布。
在静定结构中,支反力和应力可以通过简单的数学计算求解,因此设计和分析起来相对简单。
而超静定结构则相对复杂一些。
超静定结构是指在确定边界条件下,结构的参数无法通过静力平衡方程唯一求解出来的结构。
这意味着在求解超静定结构时,不仅需要静力平衡方程,还需要考虑结构的变形和材料的本构关系等。
以悬臂梁为例,悬臂梁的一端固定支承,另一端悬空。
在悬臂梁上增加一个附加支承,形成一个超静定结构。
在这种情况下,由于支承力未知,无法通过静力平衡方程唯一求解出来。
因此,我们需要考虑结构的变形情况,并将其作为一个未知数来求解。
在超静定结构中,我们通常采用的方法是引入截面变形理论和力法。
通过假设结构具有一定的变形形态,并利用力法求解出结构的变形、应力和支反力等参数。
通常情况下,超静定结构的计算需要较为复杂的数学方法和计算机仿真。
静定结构和超静定结构在工程实践中都有广泛的应用。
静定结构常常用于桥梁、楼房等普通建筑结构的设计与分析中,因其计算相对简单,容易掌握。
而超静定结构常常用于大跨度的特殊结构的设计与分析中,如悬索桥、曲线梁等。
虽然超静定结构计算较为复杂,但可以提供更多的设计自由度和结构优化的可能性。
总而言之,静定结构和超静定结构都是结构力学中的重要概念。
静定结构是可通过静力平衡方程求解出内部参数的结构,而超静定结构则需要额外的变形理论和力法求解。
结构力学——静定结构位移计算在工程和建筑领域中,结构力学作为一门重要的学科,主要研究了结构的受力、变形、破坏机理等问题。
其中,静定结构位移计算是结构力学中的一个重要内容。
静定结构所谓静定结构,是指能够通过静力学方程求解出所有节点的受力、反力和变形的结构。
这种结构是不需要知道材料的物理性质和荷载的实际情况的。
在静定结构中,结构的支座固定方式和荷载情况是已知的,因此能够通过解决一组静力学方程,求解出结构中节点的受力和变形。
静定结构位移计算静定结构位移计算是静定结构的重要计算方法之一。
在结构分析中,位移是一种常见的形变量,它反映了物体在载荷作用下发生的形变情况。
在静定结构中,位移是结构的重要参数之一。
它可以通过求解一组线性方程组得到。
具体来说,就是通过应变—位移—节点力关系,将结构各节点位移用系数矩阵和加载节点力表示出来,再通过求解一个线性方程组,就可以得到各节点的位移值。
静定结构位移计算的步骤静定结构位移计算中的步骤包括:1.列出节点位移方程节点位移与内力之间有一定的关系,可以通过位移方程和内力方程来表示。
这些方程可以根据物理实际条件进行建立。
2.确定支座反力支座反力是从位移计算中得到的结果之一。
支座反力是指结构上所有支点所承受的力,在位移计算时是必须考虑的。
3.形成节点位移方程组形成节点位移方程组时,需要考虑杆件的个数、受力条件、材料特性、支座情况等因素。
4.解出节点位移通过解一个线性方程组,我们可以根据已知的节点力和位移方程,求出每个节点的位移值。
静定结构位移计算的应用静定结构位移计算在现代工程设计中具有广泛的应用。
它能够在保证结构稳定的前提下,可以对结构进行优化设计,提高结构的安全性、稳定性、经济性等方面的性能。
除此之外,静定结构位移计算还可以应用于建筑设计、桥梁设计、机械设计、工业生产等领域中。
它可以提供结构设计的数据支持,为结构工程的实施提供参考。
静定结构位移计算是结构力学中的一个重要方向,其计算方法基于静力学方程进行,其特点是简单、可靠和实用。