2013同底数幂的除法2
- 格式:ppt
- 大小:570.00 KB
- 文档页数:15
同底数幂的乘法与除法
同底数幂的乘法与除法是数学运算中的两个重要概念。
同底数幂是指
底数相同的幂,例如2²和2³。
在进行同底数幂的乘法和除法时,我们需要了解其规律和方法。
同底数幂的乘法规律是:同底数幂相乘时,底数不变,指数相加。
例如,2² × 2³ = 2⁵,因为底数为2,指数为2和3,相加得5。
同底数幂的除法规律是:同底数幂相除时,底数不变,指数相减。
例如,2³ ÷ 2² = 2ⁱ,因为底数为2,指数为3和2,相减得1。
同底数幂的乘法和除法可以应用在各种数学题目中。
例如,在求解指
数函数中,我们需要将同底数幂合并为一个幂,再使用指数函数的性
质进行求解。
同样,当我们求解复合利率问题时,也需要使用同底数
幂的乘法和除法来计算利率的变化。
除此之外,在计算长度、面积和体积等问题时,我们也需要运用同底
数幂的乘法和除法。
例如,当我们求解一个正方形面积时,可以将正
方形的边长表示为同底数幂形式,再运用同底数幂的乘法来计算面积。
在进行同底数幂的乘法和除法时,需要注意底数必须相同。
如果底数
不同,则无法进行同底数幂的运算。
同时,如果指数为负数,则需要先将负指数转化为正指数,再进行运算。
例如,2⁻³可以转化为1/2³。
综上所述,同底数幂的乘法与除法是数学运算中的基础概念。
它们在各种数学问题解决中都发挥着重要的作用。
在进行计算时,需要注意底数相同和指数的符号问题,才能正确进行同底数幂的乘法和除法。
大柳塔中学七年级数学导学案主备:王华 参与:七年级数学组成员 时间:2014年2月21日 班级: 姓名:课题 同底数幂的除法(2)----- 科学计数法导学目标1.借助自己熟悉的事物,感受较小数 2.能用科学技术法表示绝对值较小的数。
导学重点 用科学记数法表示绝对值较小的数导学难点 感受较小数,发展数感导学过程设计一、温故1.把下列各数用科学记数法来表示:(1)2500000= (2)753000= (3)205000000=2.一般地,一个大于10的数可以表示成 的形式,其中 ,n 是正整数(n 比原数的整数位数小1),这种记数方法叫科学记数法。
二、知识归纳:把下列小数用科学记数法表示出来:551010100001.0-==; 0.001= = ; 0.000 000 001= = ; 0.000 000 007012= = 规律:一般地,一个小于1的正数也可以表示为 的形式,其中1≤a ≤10, n 是 ( )三、做一做1.用科学记数法表示下列各数:0.000 000 000 1; 0.000 000 000 002 9; 0.000 000 001 295.2.下列各数中用科学记数法表示正确的是( )A .0.000 001 06=1.06×105-;B .0.000 16=16×104- C.-0.000 001 2=-1.2×106-;D .65 000=6.5×103四、议一议(1)PM2.5是指大气中直径小于或等于2.5µm 的细颗粒物,也称为可入肺细颗粒物。
虽然它们的直径还不到人的头发的粗细的201,但它们含有大量的有毒有害物质,并且在大气中停留的时间长、输送距离远,因而对人体健康大气环境质量有很大危害。
假设一种可入肺细颗粒物的直径约为2.5µm,相当于多少米?多少个这样的细颗粒物收尾连接起来能达到1m?与同伴交流。
(2)估计一张纸的厚度大约是多少厘米?你是怎么做的?与同伴交流。
同底数幂的乘除法法则
大家都知道,乘法和除法是数学中最常用的运算,它们深深地影响着我们现代社会的发展。
在数学中,又有一种特殊的运算叫做“同底数幂的乘除法法则”。
在本文中,我将向大家介绍这一规则,使大家了解到这种特殊的运算方法以及它的应用。
“同底数幂的乘除法法则”是指将两个相同底数(即基数)的幂使用乘除运算相互结合,从而得到新的幂。
具体来说,若有两个幂P (a^x)和Q(a^y),其中a为底数,x和y为指数,则可以使用以下公式相乘得到新的幂:P×Q=a^(x+y)。
此外,如果想要使用同底数幂的除法,则可以使用下列公式:P/Q=a^(x-y)。
同底数幂乘除法法则具有特别重要的意义,它为解决乘除数学问题提供了极大的方便。
例如,对于那些使用整数乘除结合公式来求解方程的问题,可以使用同底数幂乘除法来计算。
例如,若有要解决的方程为:2^x+2^y=2^(x+y),则可以使用同底数幂乘除法来求解:
2^x+2^y = 2^(x+y)/2^x = 2^y,从而得到结果y=x。
另外,在一些线性代数的问题中,也可以使用同底数幂乘除法来简化计算。
以求解以下逐步矩阵的问题为例:
[2^x 0][a b]=[2^x a+2^x b]
根据同底数幂乘除法法则,可以将等式转化为:2^x(a+2^x b) = 2^x a + 2^(x+x) b = 2^x a + 2^(2x) b,从而得到逐步矩阵的结果。
总之,“同底数幂的乘除法法则”对于数学计算具有不可磨灭的意义,它可以让解决数学问题变得更加容易。
它丰富了数学计算的内
涵,有助于更好地推进人类社会的发展。
幂的运算法则公式
幂运算法则公式:同底数幂相乘,底数不变,指数相加,即a m×a n=a(m+n);同底数幂相除,底数不变,指数相减,即a m÷a n=a(m-n)。
(1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加。
a m×a n=a(m+n)(a≠0,m,n均为正整数,并且m>n)
(2)同底数幂的除法:同底数幂相除,底数不变,指数相减。
a m÷a n=a(m-n)(a≠0,m,n均为正整数,并且m>n)
(3)幂的乘方:幂的乘方,底数不变,指数相乘。
(a m)n=a(mn),(m,n都为正整数)
(4)积的乘方:等于将积的每个因式分别乘方,再把所得的幂相乘。
(ab)n=a n b n,(n为正整数)
(5)分式的乘方:把分式的分子、分母分别乘方即为乘方结果
(a/b)n=(a n)/(b n),(n为正整数)
(6)零指数:
a0=1 (a≠0)
(7)负整数指数幂
a-p=1/a p(a≠0, p是正整数)
(8)负实数指数幂
a(-p)=1/(a)p或(1/a)p(a≠0,p为正实数)(9)正整数指数幂
①a m a n=a m+n
②(a m)n=a mn
③a m/a n=a m-n(m大于n,a≠0)
④(ab)n=a n b n。