同底数幂的除法教案2
- 格式:doc
- 大小:90.46 KB
- 文档页数:4
同底数幂的除法教案《同底数幂的除法教案》一、教学目标1. 让学生理解同底数幂的除法法则。
2. 学生能够熟练运用同底数幂的除法法则进行计算。
二、教学重难点1. 重点:同底数幂的除法法则的理解和应用。
2. 难点:对法则中底数不变、指数相减的准确把握。
三、教学方法讲授法、练习法、讨论法。
四、教学过程(一)导入同学们,大家看啊,我前几天去菜市场买菜,看到卖菜的阿姨在算账。
她把一堆西红柿分成了几堆,这就好像我们的同底数幂呀,然后她计算每一堆有多少个西红柿,这其实就和我们今天要学的同底数幂的除法很像呢!(哈哈,是不是很有意思呀)(二)讲解同底数幂的除法法则我们就像分析阿姨分西红柿一样来理解这个法则。
比如有 a 的 m 次方除以 a 的 n 次方,就相当于把有 m 个 a 的一堆东西分成 n 等份,那每份不就是 a 的(m-n)次方嘛。
大家想想是不是这个道理呀。
(三)例题讲解例 1:计算 x 的 5 次方÷x 的 3 次方。
就像把 5 个 x 分成 3 份,那每份就是 2 个 x 啦,所以结果就是 x 的 2 次方。
例 2:(-a)的 7 次方÷(-a)的 4 次方。
哎呀,就好比把 7 个-a 分成 4 份,每份就是 3 个-a 嘛,结果就是(-a)的 3 次方。
(四)课堂练习让同学们做几道练习题,巩固一下所学知识。
(五)课堂总结同学们,今天我们学习了同底数幂的除法法则,就像菜市场阿姨分西红柿一样简单易懂哦。
大家要记住底数不变,指数相减呀。
(六)布置作业布置一些课后作业,让同学们进一步掌握同底数幂的除法。
哎呀,希望大家都能像理解阿姨分西红柿一样理解同底数幂的除法,这样学起来就轻松多啦!以上教案仅供参考,你可以根据实际情况进行调整和修改哦。
同底数幂的除法教案教案:同底数幂的除法一、教学目标:1.理解同底数幂的除法的概念和规则;2.掌握同底数幂的除法的计算方法;3.能够解决一些实际问题,运用同底数幂的除法进行计算。
二、教学内容:1.同底数幂的概念;2.同底数幂的除法的规则;3.同底数幂的除法的计算方法。
三、教学过程:1.导入新课:通过展示一道题目,激发学生对同底数幂的除法的兴趣,并进行讨论。
题目:计算2的4次方除以2的2次方。
解答:2的4次方除以2的2次方等于2的(4-2)次方,即2的2次方,所以答案是4、这是因为当分子和分母的底数相同时,我们可以把它们的指数相减,得到新的指数。
2.引入同底数幂的概念:通过简单的例子和图示,向学生介绍同底数幂的概念,并强调同底数幂的指数运算规律。
例子:计算3的5次方除以3的3次方。
解答:3的5次方除以3的3次方等于3的(5-3)次方,即3的2次方,所以答案是93.引入同底数幂的除法的规则:向学生介绍同底数幂的除法的规则,并通过举例进行解释。
规则:当同底数幂相除时,我们可以将它们的指数相减,得到新的指数。
例子:计算5的6次方除以5的4次方。
解答:5的6次方除以5的4次方等于5的(6-4)次方,即5的2次方,所以答案是254.练习与讨论:让学生自主完成下面的练习,并进行讨论和答案的讲解。
练习1:计算2的7次方除以2的5次方。
练习2:计算4的8次方除以4的6次方。
练习3:计算7的11次方除以7的8次方。
5.进一步拓展:让学生解决一些与同底数幂的除法相关的实际问题,加深对同底数幂的除法的理解和运用能力。
问题1:假设你每天走路步数都是3的5次方步,一周走了3的7次方步,你能计算出你每天走了几步吗?问题2:一个装有5的4次方毫升水的瓶子里,每天用水3的2次方毫升,这个瓶子里的水能用多少天?问题3:公司每年盈利6的5次方万元,用于分红的部分是6的3次方万元,每人分得的分红是多少万元?四、教学总结:通过本节课的学习,学生应该对同底数幂的除法有了较好的理解。
1.5同底数幂的除法
教学目标:1.经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.
2.了解同底数幂的除法的运算性质,并能解决一些实际问题.
教学重点:会进行同底数幂的除法运算.
教学难点:同底数幂的除法法则的总结及运用.
教学方法:尝试练习法,讨论法,归纳法.
教学用具:投影仪
教学过程:
一、探索归纳:
(1)
(1)
(3)
(4)
从上面的练习中你发现了什么规律?
猜一猜:
二、随堂练习:
1、填空:(1)(2)
(3)=(4)(5)
2、计算:
(1)(2)(3)
(4)(5)
3、用小数或分数表示下列各数:
(1)(2)(3)(4)(5)4.2(6)
三、提高练习:
1
、已知
2、若
3、(1
)若
=(2)若
(3)若0.000 000 3=3×
,则(4)若
四、小结:会进行同底数幂的除法运算.
五、作业:课本P29习题1.7:1、2、3、4.
六、板书设计
七、教学后记:。
同底数幂除法教案教学目标:1. 理解同底数幂除法的概念和意义。
2. 掌握同底数幂除法的运算规则和步骤。
3. 能够正确进行同底数幂除法的计算。
教学内容:第一章:同底数幂除法的概念1.1 引入同底数幂除法的概念1.2 解释同底数幂除法的意义第二章:同底数幂除法的运算规则2.1 介绍同底数幂除法的运算规则2.2 演示同底数幂除法的运算步骤第三章:同底数幂除法的计算方法3.1 讲解同底数幂除法的计算方法3.2 进行同底数幂除法的计算示例第四章:同底数幂除法的应用4.1 展示同底数幂除法的应用题4.2 引导学生解决同底数幂除法的应用题第五章:巩固练习5.1 提供同底数幂除法的练习题5.2 学生独立完成练习题并进行讲解教学方法:1. 采用讲授法,讲解同底数幂除法的概念、运算规则和计算方法。
2. 使用示例和应用题,引导学生进行思考和练习。
3. 提供练习题,巩固学生对同底数幂除法的理解和应用能力。
教学评估:1. 课堂上进行同底数幂除法的练习,观察学生的掌握情况。
2. 提供课后作业,收集学生的练习成果并进行批改和反馈。
3. 在下一节课开始时,进行同底数幂除法的测试,评估学生的学习效果。
教学资源:1. 教学PPT,展示同底数幂除法的概念、运算规则和计算方法。
2. 同底数幂除法的练习题和应用题。
3. 课后作业和测试题。
教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时教学总结:通过本章的教学,学生应该能够理解同底数幂除法的概念和意义,掌握同底数幂除法的运算规则和计算方法,并能够正确进行同底数幂除法的计算。
通过应用题和练习题的练习,学生能够巩固对同底数幂除法的理解和应用能力。
第六章:同底数幂除法的扩展应用6.1 介绍同底数幂除法在实际问题中的应用。
6.2 解决实际问题,如物理中的速度、面积计算等。
教学方法:通过实例讲解同底数幂除法在实际问题中的应用。
引导学生运用同底数幂除法解决生活中的问题。
同底数幂的除法教学教案第一章:同底数幂的除法概念引入1.1 学习目标让学生理解同底数幂的除法概念。
让学生掌握同底数幂的除法法则。
1.2 教学内容引入幂的定义:幂是指一个数与另一个数的乘积,表示为a^n,其中a 是底数,n 是指数。
引导学生思考同底数幂的除法:当两个幂的底数相如何计算它们的除法?1.3 教学活动通过举例说明同底数幂的除法,如2^3 ÷2^2 = 2^(3-2) = 2^1 = 2。
让学生尝试解决一些同底数幂的除法问题,并总结除法法则。
1.4 练习与巩固设计一些同底数幂的除法练习题,让学生独立完成。
让学生互相讨论解题过程,加深对同底数幂除法概念的理解。
第二章:同底数幂的除法法则2.1 学习目标让学生掌握同底数幂的除法法则。
让学生能够应用除法法则解决实际问题。
2.2 教学内容介绍同底数幂的除法法则:同底数幂相除,底数不变,指数相减。
解释除法法则的应用:如何计算a^m ÷a^n 和a^m ÷b^n。
2.3 教学活动通过示例演示同底数幂的除法法则,如2^5 ÷2^3 = 2^(5-3) = 2^2 = 4。
让学生尝试解决一些同底数幂的除法问题,并应用除法法则。
2.4 练习与巩固设计一些同底数幂的除法练习题,让学生独立完成。
让学生互相讨论解题过程,加深对同底数幂除法法则的理解。
第三章:同底数幂的除法与乘法的关系3.1 学习目标让学生理解同底数幂的除法与乘法之间的关系。
让学生能够将除法问题转化为乘法问题。
3.2 教学内容解释同底数幂的除法与乘法之间的关系:同底数幂的除法可以转化为乘法的倒数。
展示如何将除法问题转化为乘法问题,如2^5 ÷2^3 可以写成2^5 ×2^(-3)。
3.3 教学活动通过示例说明同底数幂的除法与乘法之间的关系,如2^5 ÷2^3 = 2^5 ×2^(-3)。
让学生尝试解决一些同底数幂的除法问题,并应用除法与乘法之间的关系。
《同底数幂的除法》教案第一章:同底数幂的除法概念引入教学目标:1. 让学生理解同底数幂的除法概念。
2. 让学生掌握同底数幂的除法法则。
教学内容:1. 引入同底数幂的除法概念。
2. 讲解同底数幂的除法法则。
教学步骤:1. 通过具体例子引入同底数幂的除法概念,例如:\( 3^4 ÷3^2 = ? \)。
2. 引导学生观察例子,发现同底数幂的除法法则:\( a^m ÷a^n = a^{m-n} \)。
3. 让学生通过小组讨论,总结同底数幂的除法法则。
教学评价:1. 检查学生对同底数幂的除法概念的理解。
2. 检查学生对同底数幂的除法法则的掌握。
第二章:同底数幂的除法运算教学目标:1. 让学生掌握同底数幂的除法运算。
2. 让学生能够正确进行同底数幂的除法运算。
教学内容:1. 讲解同底数幂的除法运算规则。
2. 进行同底数幂的除法运算练习。
教学步骤:1. 讲解同底数幂的除法运算规则,例如:\( a^m ÷a^n = a^{m-n} \)。
2. 让学生进行同底数幂的除法运算练习,提供一些具体的例子,例如:\( 2^3 ÷2^2 = ? \),\( 5^4 ÷5^2 = ? \)。
3. 引导学生总结同底数幂的除法运算规则,并能够正确进行运算。
教学评价:1. 检查学生对同底数幂的除法运算规则的掌握。
2. 检查学生能够正确进行同底数幂的除法运算。
第三章:同底数幂的除法应用教学目标:1. 让学生能够将同底数幂的除法应用到实际问题中。
2. 让学生能够解决实际问题,提高解决问题的能力。
教学内容:1. 讲解同底数幂的除法在实际问题中的应用。
2. 进行同底数幂的除法应用练习。
教学步骤:1. 通过具体例子讲解同底数幂的除法在实际问题中的应用,例如:计算化学反应中物质的浓度。
2. 让学生进行同底数幂的除法应用练习,提供一些实际问题,例如:计算光强的减弱程度,计算放射性物质的衰变等。
《同底数幂的除法》教案一、教学目标1. 让学生理解同底数幂的除法概念,掌握同底数幂相除的运算性质和计算方法。
2. 培养学生运用同底数幂的除法解决实际问题的能力。
3. 提高学生的数学思维能力,培养学生的团队合作精神。
二、教学内容1. 同底数幂的除法概念2. 同底数幂相除的运算性质3. 同底数幂的除法计算方法4. 应用题解析三、教学重点与难点1. 教学重点:同底数幂的除法概念、运算性质和计算方法。
2. 教学难点:同底数幂的除法计算方法在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生探究同底数幂的除法概念和运算性质。
2. 运用案例分析法,让学生通过解决实际问题,掌握同底数幂的除法计算方法。
3. 采用小组讨论法,培养学生的团队合作精神和数学思维能力。
五、教学步骤1. 导入新课:复习幂的定义和性质,引导学生思考同底数幂的除法问题。
2. 讲解同底数幂的除法概念和运算性质,让学生理解并掌握同底数幂相除的规律。
3. 演示同底数幂的除法计算方法,让学生通过例题跟随老师一起计算,巩固所学知识。
4. 布置练习题,让学生独立完成,检测学习效果。
5. 总结本节课所学内容,布置课后作业。
6. 课堂反馈:课后收集学生作业,了解掌握情况,为下一步教学做好准备。
六、教学评估1. 课后作业:布置相关的习题,让学生巩固同底数幂的除法概念和计算方法。
2. 课堂练习:课堂上进行一些即时的练习,通过学生的回答情况来评估学生的理解程度。
3. 小组讨论:在小组讨论中,观察学生是否能够有效地参与讨论,并运用所学的知识解决实际问题。
七、教学反思在课后,对教学过程进行反思,思考教学方法是否适合学生,学生是否掌握了重点内容,教学难点是否得到有效解决。
根据反思的结果,调整教学策略,为下一节课做好准备。
八、拓展活动1. 研究不同底数幂的除法:让学生探索不同底数幂的除法规则,加深对幂的除法概念的理解。
2. 数学竞赛:组织同底数幂的除法竞赛,激发学生的学习兴趣,提高学生的数学能力。
15.3.1 同底数幂的除法
一、教学目标:
1、了解同底数幂的除法的运算性质,并会用其解决实际问题。
2、经历探究同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理水平和有条件的表达水平。
3、感受数学法则、公式的简洁美、和谐美。
二、教学重、难点:
重点:准确熟练地使用同底数幂的除法运算法则实行计算。
难点:根据乘、除互逆的运算关系得出同底数幂的除法运算法则。
三、教学方法:
观察、分析、合作、探究
四、教学过程:
(一)回顾旧知,引入新课
1、同底数幂的乘法法则:
m (m、n为正整数),同底数幂相乘,底数不变,指数相加。
a m·
b n= a n
2、(1)a5·a2=()(2)m3·m5=()
(3)x3·x5·x4=()(4)(-6)3·(-6)2=( )
3、(1)a5·( )= a7(2)m3·( )= m8
(3)x3·x5·( )= x12(4)(-6)3·( )=(-6)5
(二)探究新知,实行新课
探究1:根据除法的意义填空,看看计算结果有什么规律:
(1)55÷53= 5( )
(2)107÷105= 10( )
(3)a6÷a3= a( )
观察以上的几个计算,它们有什么共同的特点?每个式子底数(),指数()
在学生充分讨论与发言的基础上,教师结合同底数幂的乘法法则归纳出同底数幂的除法法则:
同底数幂的乘法:
同底数幂相乘,底数不变,指数相加。
同底数幂的除法:
同底数幂相除,底数不变,指数相减。
思考:为什么这里规定a ≠ 0?
(三)自学例题,应用法则
活动2:例题自学
例1、计算
(1)x 8÷x 2 (2)a 4÷a (3)(a b)5÷(a b)2
解:(1)x 8÷x 2
= x 28-= x 6
(2)a 4÷a = a 14-= a 3
(3)(a b)5÷(a b)2= (a b)25- = (a b)3= a 3b 3 活动3:小试牛刀
下面的计算对不对?如果不对,理应怎样改正?
(1)x 6÷x 2= x 3 (2)64÷62= 62
(3)a 3÷a = a 3 (4)(-c)4÷(-c)2= -c 2
探究2:分别根据除法的意义填空,你能得出什么结论?
(1)32÷32=( )(2)103÷103=( )(3)a m ÷a m =( )(a ≠0) 根据除法的意义,可知:a m ÷a m = 1
如果依照同底数幂的除法a m ÷a n = a n m -(m >n )来处理,又可得: a m ·b n = a n m +(m 、n 为正整数)
a m ÷
b n = a n m -(a ≠0,m 、n 为正整数,并且m >n )
a m ÷a m = a m m = a 0
于是规定:
即任何不等于0的数的0次幂都等于1。
(四)当堂训练(板演)
(1)x 7÷x 5(2)m 8÷m 8(3)(-a )10÷(-a )7(4)(xy)5÷(xy)3
(5)(-m)12÷m 5· m 8(6)(5a -2b)12÷(2b-5a )5(7)(x-y) ÷(y-x)·(y-x) 活动4:即时小结,拓展提升
1、同底数幂的除法法则是什么?
2、a 0=1(a ≠ 0)意义?
3、如何处理同底数幂除法运算中的符号问题?
4、乘除运算同时出现,运算顺序是?
(五)当堂检测
1.下面计算中,准确的是( )
A .a 2n ÷a n =a 2
B .a 2n ÷a 2=a n
C .(xy )5÷xy 3=(xy )2
D .x 10÷(x 4÷x 2)=x 8.
2.(2×3-12÷2)0等于( )
A .0
B .1
C .12
D .无意义
3.若x 2m +1÷x 2=x 5,则m 的值为 ( )
A .0
B .1
C .2
D .3
4.(a 2)4÷a 3÷a 等于( )
A .a 5
B .a 4
C .a 3
D .a 2
5.若32x +1=1,则x = ;若3x =
271,则x = . 6.x m +n ÷x n =x 3,则m = .
7.计算:[-2-3-8-1×(-1)-2]×(-21)-2×70.
8.计算:(23)-1+(23)0-(31)-
1.
a 0= 1(a ≠0)
9.已知10m=3,10n=2,求102m-n的值.板书设计:。