【决胜高考】2016高考数学专题复习导练测 第十章 第2讲 排列与组合 理 新人教A版
- 格式:doc
- 大小:53.50 KB
- 文档页数:4
§10.2排列与组合1.排列(1)排列的定义:从n个不同元素中取出m (m≤n)个元素,按照一定的顺序排成一列,叫作从n个不同元素中任意取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有排列的个数叫作从n个不同元素中取出m个元素的排列数,记作A m n.(3)排列数公式:A m n=n(n-1)(n-2)…(n-m+1).(4)A n n=n·(n-1)·(n-2)·…·2·1=n!.A m n=n!(n-m)!,这里规定0!=1.2.组合(1)组合的定义:从n个不同的元素中,任取出m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫作从n个不同元素中取出m个元素的组合数,用C m n表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,由于0!=1,所以C0n=1.(4)组合数的性质:①C m n=C n-mn __;②C m n+1=C m n__+C m-1n__.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.(×)(2)一个组合中取出的元素讲究元素的先后顺序.(×)(3)两个组合相同的充要条件是其中的元素完全相同.(√)(4)(n+1)!-n!=n·n!. (√)(5)A m n=n A m-1n-1. (√)(6)k C k n=n C k-1n-1. (√) 2.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有() A.4种B.10种C.18种D.20种答案 B解析方法一不同的赠送方法有A45A22A33=10(种).方法二从2本同样的画册,3本同样的集邮册中取出4本有两种取法:第一种:从2本画册中取出1本,将3本集邮册全部取出;第二种:将2本画册全部取出,从3本集邮册中取出2本.由于画册是相同的,集邮册也是相同的,因此第一种取法中只需从4位朋友中选出1人赠送画册,其余的赠送集邮册,有C14=4(种)赠送方法;第二种取法中只需从4位朋友中选取2人赠送画册,其余的赠送集邮册,有C24=6(种)赠送方法.因此共有4+6=10(种)赠送方法.3.(2012·大纲全国)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有() A.12种B.18种C.24种D.36种答案 A解析先排第一列,因为每列的字母互不相同,因此共有A33种不同的排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.4.用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为() A.8 B.24 C.48 D.120答案 C解析分两步:(1)先排个位有A12种排法.(2)再排前三位有A34种排法,故共有A12A34=48种排法.5.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有______种.答案14解析①有1名女生:C12C34=8.②有2名女生:C22C24=6.∴不同的选派方案有8+6=14(种).题型一排列问题例1有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间.思维启迪 这是一个排列问题,一般情况下,我们会从受到限制的特殊元素开始考虑,有时也从特殊的位置讨论起.对于相邻问题,常用“捆绑法”;对于不相邻问题,常用“插空法”(特殊元素后考虑);对于“在”与“不在”的问题,常常使用“直接法”或“排除法”(特殊元素先考虑). 解 (1)方法一 (元素分析法) 先排甲有6种,其余有A 88种,故共有6·A 88=241 920(种)排法.方法二 (位置分析法)中间和两端有A 38种排法,包括甲在内的其余6人有A 66种排法,故共有A 38·A 66=336×720=241 920(种)排法. 方法三 (等机会法)9个人的全排列数有A 99种,甲排在每一个位置的机会都是均等的,依题意,甲不在中间及两端的排法总数是A 99×69=241 920(种). 方法四 (间接法)A 99-3·A 88=6A 88=241 920(种).(2)先排甲、乙,再排其余7人, 共有A 22·A 77=10 080(种)排法. (3)(插空法)先排4名男生有A 44种方法,再将5名女生插空,有A 55种方法,故共有A 44·A 55=2 880(种)排法.思维升华 本题集排列多种类型于一题,充分体现了元素分析法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、直接法、间接法(排除法)、等机会法、插空法等常见的解题思路.用0,1,3,5,7五个数字,可以组成多少个没有重复数字且5不在十位位置上的五位数? 解 本题可分两类:第一类:0在十位位置上,这时,5不在十位位置上,所以五位数的个数为A 44=24; 第二类:0不在十位位置上,这时,由于5不能排在十位位置上,所以,十位位置上只能排1,3,7之一,这一步有A 13=3种方法.又由于0不能排在万位位置上,所以万位位置上只能排5或1,3,7被选作十位上的数字后余下的两个数字之一,这一步有方法A 13=3(种).十位、万位上的数字选定后,其余三个数字全排列即可,这一步有方法A 33=6(种).根据分步乘法计数原理,第二类中所求五位数的个数为A 13·A 13·A 33=54. 由分类加法计数原理,符合条件的五位数共有24+54=78(个).题型二组合问题例2某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?思维启迪可以从特殊元素出发,考虑直接选取或使用间接法.解(1)从余下的34种商品中,选取2种有C234=561(种),∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种).∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100(种).∴恰有2种假货在内的不同的取法有2 100种.(4)选取2件假货有C120C215种,选取3件假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数有C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.思维升华组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.甲、乙两人从4门课程中各选修2门,(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?解(1)甲、乙两人从4门课程中各选修2门,且甲、乙所选课程中恰有1门相同的选法种数共有C24C12C12=24(种).(2)甲、乙两人从4门课程中各选两门不同的选法种数为C24C24,又甲乙两人所选的两门课程都相同的选法种数为C24种,因此满足条件的不同选法种数为C24C24-C24=30(种).题型三 排列与组合的综合应用问题例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法?思维启迪 把不放球的盒子先拿走,再放球到余下的盒子中并且不空.解 (1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C 14C 24C 13×A 22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法. (3)确定2个空盒有C 24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;第二类有序均匀分组有C 24C 22A 22·A 22种方法.故共有C 24(C 34C 11A 22+C 24C 22A 22·A 22)=84(种). 思维升华 排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.(1)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种(2)(2013·重庆)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答)答案 (1)B (2)590 解析 (1)先放1、2的卡片有C 13种,再将3、4、5、6的卡片平均分成两组再放置,有C 24A 22·A 22种,故共有C 13·C 24=18种. (2)分三类:①选1名骨科医生,则有C 13(C 14C 35+C 24C 25+C 34C 15)=360(种). ②选2名骨科医生,则有C 23(C 14C 25+C 24C 15)=210(种); ③选3名骨科医生,则有C 33C 14C 15=20(种).∴骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590.排列、组合问题计算重、漏致误典例:(5分)有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种.易错分析易犯错误如下:先从一等品中取1个,有C116种取法;再从余下的19个零件中任取2个,有C219种不同取法,共有C116×C219=2 736种不同取法.上述做法使两次取的一等品有了先后顺序,导致取法重复.解析方法一将“至少有1个是一等品的不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类加法计数原理有C116C24+C216C14+C316=1 136(种).方法二考虑其对立事件“3个都是二等品”,用间接法:C320-C34=1 136(种).答案 1 136温馨提醒(1)排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻,考虑周全,这样才能做到不重不漏,正确解题.(2)“至少、至多型”问题不能利用分步乘法计数原理求解,多采用分类求解或转化为它的对立事件求解.方法与技巧1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.失误与防范1.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.2.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.3.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.A组专项基础训练(时间:35分钟)一、选择题1.(2012·课标全国)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种答案 A解析分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2×6=12(种).2.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为() A.C27A55B.C27A22C.C27A25D.C27A35答案 C解析从后排抽2人的方法种数是C27;前排的排列方法种数是A25.由分步乘法计数原理知不同调整方法种数是C27A25.3.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有() A.36种B.42种C.48种D.54种答案 B解析分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有A44种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C13种排法,其他3个节目有A33种排法,故有C13A33种排法.依分类加法计数原理,知共有A44+C13A33=42(种)编排方案.4.如图所示,使电路接通,开关不同的开闭方式有()A.11种B.20种C.21种D.12种答案 C解析当第一组开关有一个接通时,电路接通有C12(C13+C23+C33)=14(种)方式;当第一组开关有两个接通时,电路接通有C22(C13+C23+C33)=7(种)方式.所以共有14+7=21(种)方式,故选C.5.(2012·山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为() A.232 B.252C.472 D.484答案 C解析分两类:第一类,含有1张红色卡片,共有不同的取法C14C212=264(种);第二类,不含有红色卡片,共有不同的取法C312-3C34=220-12=208(种).由分类加法计数原理知不同的取法有264+208=472(种).二、填空题6.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有________种.答案60解析可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步乘法计数原理知满足条件的排法共有A35=60(种).7.(2013·北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.答案96解析将5张参观券分成4堆,有2个连号有4种分法,每种分法再分给4人,各有A44种分法,∴不同的分法种数共有4A44=96.8.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.答案8解析先把两奇数捆绑在一起有A22种方法,再用插空法共有个数A22·C12·A22=8.9.某商店要求甲、乙、丙、丁、戊五种不同的商品在货架上排成一排,其中甲、乙两种必须排在一起,而丙、丁两种不能排在一起,不同的排法共有________种.答案24解析甲、乙排在一起,用捆绑法,丙、丁不排在一起,用插空法,不同的排法共有2A22·A23二、解答题10.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?解(1)只需从其他18人中选3人即可,共有C318=816(种);(2)只需从其他18人中选5人即可,共有C518=8 568(种);(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C12C418+C318=6 936(种);(4)方法一(直接法):至少有一名内科医生和一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656(种).方法二(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C512+C58)=14 656(种).B组专项能力提升(时间:15分钟)1.(2012·北京)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为() A.24 B.18 C.12 D.6答案 B解析当选0时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,剩余1个数字排在首位,共有C23C12=6(种)方法;当选2时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,其余2个数字全排列,共有C23C12A22=12(种)方法.依分类加法计数原理知共有6+12=18(个)奇数.2.把3盆不同的兰花和4盆不同的玫瑰花摆放在右图中的1,2,3,4,5,6,7所示的位置上,其中3盆兰花不能放在一条直线上,则不同的摆放方法有()A.2 680种B.4 320种C.4 920种D.5 140种解析先将7盆花全排列,共有A77种排法,其中3盆兰花排在一条直线上的排法有5A33 A44(种),故所求摆放方法有A77-5A33A44=4 320(种).3.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数有() A.A44A55B.A33A44A35C.C13A44A55D.A22A44A55答案 D解析先把3种品种的画看成整体,而水彩画受限制应优先考虑,不能放在头尾,故只能放在中间,又油画与国画有A22种放法,再考虑国画与油画本身又可以全排列,故排列的方法有A22A44A55种.4.(2013·浙江)将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有________种(用数字作答).答案480解析分类讨论:A、B都在C的左侧,且按C的左侧分别有两个、三个、四个、五个字母这4类计算,再考虑右侧情况.所以共有2(A22·A33+C13A33·A22+C23A44+A55)=480(种).5.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴省运会的四个不同场馆服务,不同的分配方案有________种(用数字作答).答案 1 080解析先分组再分配,共有C16C15C242A22·A44=1 080(种)分配方案.6.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种(用数字作答).答案96解析甲传第一棒,乙传最后一棒,共有A44种方法.乙传第一棒,甲传最后一棒,共有A44种方法.丙传第一棒,共有C12·A44种方法.由分类加法计数原理得,共有A44+A44+C12·A44=96(种)方法.7.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8种卡片中取出4张卡片排成一行,如果取出的4张卡片所标的数字之和等于10,则不同的排法共有________种(用数字作答).答案432解析取出的4张卡片所标数字之和等于10,共有三种情况:1144,2233,1234.所取卡片是1144的共有A44种排法.所取卡片是2233的共有A44种排法.所取卡片是1234,则其中卡片颜色可为无红色,1张红色,2张红色,3张红色,全是红色,共有排法A44+C14A44+C24A44+C34A44+A44=16A44(种),∴共有排法18A44=18×4×3×2×1=432(种).。
课后课时作业[A组·基础达标练]1.[2016·四川“联测促改”(一)]编号为1,2,3,4,5,6的六个同学排成一排,3,4号两位同学相邻,不同的排法有()A.60种B.120种C.240种D.480种答案 C解析把3,4号看成一个整体,再与其他的号排列,A22A55=240.2.[2015·东北三省二模]已知函数f(x)=ln (x2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()A.8 B.9C.26 D.27答案 B解析由题意可知当ln (x2+1)=0时,x=0;当ln (x2+1)=1时,x=±e-1;当ln (x2+1)=2时,x=±e2-1,所以定义域取值即在这5个元素中选取.①当定义域有3个元素时,满足条件的个数为C11 C12C12=4;②当定义域中有4个元素时,满足条件的个数为C11C34=4;③当定义域中有5个元素时,满足条件的个数为1.所以共有4+4+1=9个这样的函数.3.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A35答案 C解析从后排抽2人的方法种数是C27,前排的排列方式种数为A25,由分步乘法计数原理知不同调整方法种数是C27A25.4.[2014·辽宁高考]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120C.72 D.24答案 D解析空位不相邻时,有A23×2=12种坐法,有两个空位相邻时,有A33×A22=12种坐法,所以共有12+12=24种坐法.5.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216C.180 D.162答案 C解析分两类:第1类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C23·C22·A44=72个不同的四位数;第2类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C12·C23·(A44-A33)=108个不同的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180个.故选C.6.现有4种不同颜色要对如图所示的四个部分进行着色,每部分涂一种颜色,有公共边界的两块不能用同一种颜色,如果颜色可以反复使用,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案 D解析按使用颜色种数可分为两类.①使用4种颜色有A44=24种不同的着色方法,②使用3种颜色有A34=24种不同着色方法.由分类加法计数原理知共有24+24=48种不同的着色方法.故选D.7.[2014·北京高考]把5件不同产品摆成一排,若产品A与产品B 相邻,且产品A与产品C不相邻,则不同的摆法有________种.答案36解析将A、B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48(种)摆法,而A、B、C3件在一起,且A、B相邻,A、C相邻有CAB、BAC两种情况,将这3件与剩下2件全排列,有2×A33=12(种)摆法,故满足条件的不同摆法有48-12=36(种).8.[2014·广东高考]从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.答案1 6解析从10个数字中任取7个数,有C710种方法,其中以6为中位数的情况是6在中间,后面必须是7,8,9,前面可以在0到5这6个数中任取3个,从而所求概率是C36C710=1 6.9.某铁路货运站对6列货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组,如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有________种.答案 216解析 先进行分组,从其余4列火车中任取2列与甲一组,不同的分法为C 24=6(种).由分步计数原理得不同的发车顺序为C 24·A 33·A 33=216(种). 10.计算:(1)2A 57-A 666!+5!;(2)(C 98100+C 97100)÷A 3101; (3)C 22+C 23+C 24+…+C 210.解 (1)原式=7!-6!6!+5!=(7×6-6)×5!(6+1)×5!=367.(2)原式=C 98101÷A 3101=C 3101÷A 3101=1A 33=16.(3)原式=(C 33+C 23)+C 24+…+C 210=(C 34+C 24)+C 25+…+C 210=(C 35+C 25)+C 26+…+C 210=…=C 311=165.[B 组·能力提升练]1.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种答案 A解析 解法一:先分组后分配,不同的安排方案共有C 24C 22A 22A 22A 22=12(种).故选A.解法二:由位置选元素,先安排甲地,其余去乙地,不同的安排方案共有C12C24·C11C22=12(种).选A.2.计划在4个不同的体育馆举办排球、篮球、足球3个项目的比赛,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2个的安排方案共有()A.60种B.42种C.36种D.24种答案 A解析按照选取的体育馆数进行分类.①选取三个不同的体育馆,则需从4个体育馆中选取3个进行全排,不同的方案为A34=24个;②选取两个不同的体育馆,则需先从4个体育馆中选取1个,选择三个项目中的两个;然后从剩余3个体育馆中选取一个举办剩下的1个项目即可,故不同的安排方案为C14C23C13C11=36个.综上,不同的方案共有24+36=60个.故选A.3.[2016·重庆模拟]将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法共有________种.答案20解析解法一:将7个相同的球放入4个不同的盒子,即把7个球分成4组,因为要求每个盒子都有球,所以每个盒子至少放1个球,不妨将7个球摆成一排,中间形成6个空,只需在这6个空中插入3个隔板将它们隔开,即分成4组,不同的插入方法共有C36=20种,所以每个盒子都有球的放法共有20种.解法二:按盒中球的个数分类(1)按4、1、1、1放有C14=4(种).(2)按3、2、1、1放有4×3=12(种).(3)按2、2、2、1放有C14=4(种).所以每个盒子都有球的放法有4+12+4=20(种).4.用0、1、2、3、4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)比21034大的偶数;(2)左起第二、四位是奇数的偶数.解(1)可分五类,当末位数字是0,而首位数字是2时,有6个;当末位数字是0,而首位数字是3或4时,有A12A33=12(个);当末位数字是2,而首位数字是3或4时,有A12A33=12(个);当末位数字是4,而首位数字是2时,有3个;当末位数字是4,而首位数字是3时,有A33=6(个);故共有39个.(2)解法一:可分为两类:末位数是0,有A22·A22=4(个);末位数是2或4,有A22·A12=4(个);故共有A22·A22+A22·A12=8(个).解法二:左起第二、四位从奇数1、3中取,有A22个,首位从2、4中取,有A12个;余下的排在剩下的两位,有A22个,故共有A22A12A22=8(个).5.7人排成一排,按下列要求各有多少种排法?(1)其中甲不站排头,乙不站排尾.(2)其中甲、乙、丙三人必须相邻.(3)其中甲、乙、丙三人两两不相邻.(4)其中甲、乙中间有且只有1人.(5)其中甲、乙、丙按从左到右的顺序排列.解(1)解法一(直接法):如果甲站排尾,其余6人有A66种排法,如果甲站中间5个位置中的一个,而乙不站排尾,则有A15A15A55种排法,故共有排法A66+A15A15A55=3720种.解法二(间接法):7个人排成一排有A77种排法,其中甲在排头有A66种排法,乙在排尾有A66种排法,甲在排头且乙在排尾共有A55种排法,故共有排法A77-A66-A66+A55=3720种.(2)(相邻问题捆绑法)将甲、乙、丙捆在一起作为一个元素与其他4个元素作全排列有A55种,然后甲、乙、丙内部再作全排列有A33种,故有不同的排法A55A33=720种.(3)(相间问题插空法)先排甲、乙、丙外的4人有A44种排法,这四人之间及两端留出五个空位,然后把甲、乙、丙插入到五个空位中有A35种排法,故共有A44A35=1440种排法.(4)(定位问题优先法)甲、乙两人有A22种排法,现从剩下的五人中选一个插入甲、乙中间,有A15种排法,然后再将这三人看作一个元素,和其他四个元素作全排列,有A55种排法,故共有A22A15A55=1200种排法.(5)(定序问题缩倍法)七个人的全排列为A77,其中若只看甲、乙、丙不同顺序的排法有A33种排法,但只有一种顺序符合要求,故符合要=840种.求的不同排法有A77A33。
第一节排列与组合A组专项基础测试三年模拟精选一、选择题1.(2015·山东滨州模拟)七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有( )A.240种B.192种C.120种D.96种解析分三步:先排甲,有一种方法;再排乙、丙,排在甲的左边或右边各有4种方法;再排其余4人,有A44种方法,故共有2×4×A44=192(种).故选B.答案 B2.(2015·河南信阳模拟)某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有( )A.36种B.30种C.24种D.6种解析从4人中选出两个人作为一个元素有C24种方法,同其他两个元素在三个位置上排列C24A33=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同的参赛方案共有36-6=30,故选B.答案 B二、填空题3.(2015·衡水模拟)20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.解析先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有C216=120(种)方法.答案1204.(2014·陕西西安二模)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种(用数字作答).解析甲传第一棒,乙传最后一棒,共有A44种方法.乙传第一棒,甲传最后一棒,共有A44种方法.丙传第一棒,共有C12·A44种方法.由分类加法计数原理得,共有A44+A44+C12·A44=96种方法.答案96一年创新演练5.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”“舞者轮滑俱乐部”“篮球之家”“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为( )A.72 B.108 C.180 D.216解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:①从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分别分配到其他三个社团中,有C24A33种方法,这时共有C14C24A33种参加方法.②从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法.综合①②,共有C14C24A33+C24A33=180种参加方法.答案 C6.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学恰有2名同学是来自于同一年级的乘坐方式共有( )A.24种B.18种C.48种D.36种解析若大一的孪生姐妹乘坐甲车,则此时甲车中的另外2人分别来自不同年级,有C23C12 C12=12种;若大一的孪生姐妹不乘坐甲车,则2名同学来自一个年级,另外2名分别来自两个年级,有C13C12C12=12种.所以共有24种乘车方式,选A.答案 AB组专项提升测试三年模拟精选一、选择题7.(2015·威海期末)从0,1,2,3,4,5六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位奇数,有多少种取法( )A.72 B.84 C.144 D.180解析若不选0,则有C23C12A33=36,若选0,则有C12C23C12C12A22=48,所以共有48+36=84种,所以选B.答案 B二、填空题8.(2014·天津模拟)从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数y=ax2+bx+c的系数a,b,c的取值,则共能组成________个不同的二次函数.解析a,b,c中不含0时,有A37个;由于a≠0,当b、c中含有0时,有2A27(个).故共有A37+2A27=294(个)不同的二次函数.答案2949.(2014·潍坊检测)张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为________(用数字作答).解析第一步:将两位爸爸排在两端有2种排法;第二步:将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有A33种排法;第三步,将两个小孩排序有2种排法.故总的排法有2×2×A33=24(种).答案24三、解答题10.(2014·苏州调研)已知10件不同的产品中有4件次品,现对它们一一测度,直至找到所有4件次品为止.(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?(2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法?解(1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回地逐个抽取测试,第2次测到第一件次品有4种方法;第8次测到最后一件次品有3种方法;第3至第7次抽取测到最后两件次品共有A25种方法;剩余4次抽到的是正品,共有A24A25A46=86 400种抽法.(2)检测4次可测出4件次品,不同的测试方法有A44种,检测5次可测出4件次品,不同的测试方法有4A34A16种;检测6次测出4件次品或6件正品,则不同的测试方法共有4A35A26+A66种.由分类计数原理,知满足条件的不同测试方法的种数为A44+4A34A16+4A35A26+A66=8 520.一年创新演练11.设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠∅的集合S的个数是( )A.57 B.56 C.49 D.8解析满足S⊆A的集合S的个数为26=64,满足S⊆A且S∩B=∅的集合S的个数为23=8,所以集合S的个数是64-8=56.答案 B。
第2讲 排列与组合1.排列、组合的定义 排列的定义 从n 个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合的定义合成一组2.排列数、组合数的定义、公式、性质 排列数组合数定义从n 个不同元素中取出m(m≤n)个元素的所有不同排列的个数 从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数 公式A m n=n(n -1)(n -2)…(n -m +1)=n !(n -m )!C m n=A mnA m m=n (n -1)(n -2)…(n -m +1)m !性质A n n =n !,0!=1C mn =C n -mn ,C mn +C m -1n =C mn +1[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)所有元素完全相同的两个排列为相同排列.( ) (2)一个组合中取出的元素讲究元素的先后顺序.( ) (3)两个组合相同的充要条件是其中的元素完全相同.( ) (4)若组合式C xn =C mn ,则x =m 成立.( ) (5)A mn =n(n -1)(n -2)…(n-m).( ) 答案:(1)× (2)× (3)√ (4)× (5)× [教材衍化]1.(选修23P27A 组T7改编)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .24解析:选D.“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A 34=4×3×2=24.2.(选修23P19例4改编)用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为( ) A .8 B .24 C .48D .120解析:选C.末位数字排法有A 12种,其他位置排法有A 34种,共有A 12A 34=48(种)排法,所以偶数的个数为48.3.(选修23P28A组T17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( )A.18 B.24C.30 D.36解析:选C.选出的3人中有2名男同学1名女同学的方法有C24C13=18种,选出的3人中有1名男同学2名女同学的方法有C14C23=12种,故3名学生中男女生都有的选法有C24C13+C14C23=30种.故选C.[易错纠偏](1)分类不清导致出错;(2)相邻元素看成一个整体,不相邻问题采用插空法是解决相邻与不相邻问题的基本方法.1.从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装计算机和组装计算机各2台,则不同的取法有________种.解析:分两类:第一类,取2台原装计算机与3台组装计算机,有C26C35种方法;第二类,取3台原装计算机与2台组装计算机,有C36C25种方法.所以满足条件的不同取法有C26C35+C36C25=350(种).答案:3502.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:设这5件不同的产品分别为A,B,C,D,E,先把产品A与产品B捆绑有A22种摆法,再与产品D,E全排列有A33种摆法,最后把产品C插空有C13种摆法,所以共有A22A33C13=36(种)不同的摆法.答案:36排列应用题3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起.【解】(1)问题即为从7个元素中选出5个全排列,有A57=2 520种排法.(2)前排3人,后排4人,相当于排成一排,共有A77=5 040 种排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法,由分步乘法计数原理知,共有N=A33·A44·A22=288(种).(4)不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的五个空隙中安排共有A35种排法,故N=A44·A35=1 440(种).(变问法)在本例条件下,求不同的排队方案的方法种数:(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端.解:(1)先排甲有4种,其余有A66种,故共有4·A66=2 880种排法.(2)先排甲、乙,再排其余5人,共有A22·A55=240种排法.求解有限制条件排列问题的主要方法直接法分类法选定一个适当的分类标准,将要完成的事件分成几个类型,分别计算每个类型中的排列数,再由分类加法计数原理得出总数分步法选定一个适当的标准,将事件分成几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法计数原理得出总数捆绑法相邻问题捆绑处理,即可以把相邻元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空隙中间接法对于分类过多的问题,按正难则反,等价转化的方法[提醒] (1)插空时要数清插空的个数,捆绑时要注意捆绑后元素的个数及相邻元素的排列数.(2)用间接法求解时,事件的反面数情况要准确.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,则含有2,3但它们不相邻的五位数有________个.解析:不考虑0在首位,0,1,4,5先排三个位置,则有A34个,2,3去排四个空当,有A24个,即有A34A24个;而0在首位时,有A23A23个,即含有2,3,但它们不相邻的五位数有A34A24-A23A23=252个.答案:252组合应用题要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)男生甲和女生乙入选;(3)男生甲、女生乙至少有一个人入选.【解】(1)法一:至少有1名女生入选包括以下几种情况:1女4男,2女3男,3女2男,4女1男,5女.由分类加法计数原理知总选法数为C15C47+C25C37+C35C27+C45C17+C55=771(种).法二:“至少有1名女生入选”的反面是“全是男代表”,可用间接法求解.从12人中任选5人有C512种选法,其中全是男代表的选法有C57种.所以“至少有1名女生入选”的选法有C512-C57=771(种).(2)男生甲和女生乙入选,即只要再从除男生甲和女生乙外的10人中任选3名即可,共有C22C310=120种选法.(3)间接法:“男生甲、女生乙至少有一个人入选”的反面是“两人都不入选”,即从其余10人中任选5人有C510种选法,所以“男生甲、女生乙至少有一个人入选”的选法数为C512-C510=540(种).(变问法)在本例条件下,求至多有2名女生入选的选法种数.解:至多有2名女生入选包括以下几种情况:0女5男,1女4男,2女3男,由分类加法计数原理知总选法数为C57+C15C47+C25C37=546(种).含有附加条件的组合问题的解法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,用间接法求解.甲、乙两人从4门课程中各选修2门,求:(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?解:(1)甲、乙两人从4门课程中各选修2门,且甲、乙所选课程中恰有1门相同的选法种数共有C24C12C12=24(种).(2)甲、乙两人从4门课程中各选两门不同的选法种数为C24C24,又甲、乙两人所选的两门课程都相同的选法种数为C24种,因此满足条件的不同选法种数为C24C24-C24=30(种).排列、组合的综合应用(高频考点)排列与组合是高考命题的一个热点,多以选择题或填空题的形式呈现,试题多为中档题.主要命题角度有:(1)相邻、相间问题;(2)分组、分配问题;(3)特殊元素(位置)问题.角度一相邻、相间问题(2020·杭州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有( )A.34种B.48种C.96种D.144种【解析】特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12A44A22=96(种),故选C.【答案】 C角度二分组、分配问题从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)【解析】分两步,第一步,选出4人,由于至少1名女生,故有C48-C46=55种不同的选法;第二步,从4人中选出队长、副队长各1人,有A24=12种不同的选法.根据分步乘法计数原理知共有55×12=660种不同的选法.【答案】660角度三特殊元素(位置)问题(2020·台州市书生中学高三期中)在某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为________.【解析】①若第一个出场的是男生,则第二个出场的是女生,以后的顺序任意排,方法有C12C13A33=36种.②若第一个出场的是女生(不是女生甲),则将剩余的2个女生排列好,2个男生插空,方法有C12A22A23=24种.故所有的出场顺序的排法种数为36+24=60.【答案】60解排列、组合综合应用问题的思路1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解析:选D.因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).2.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析:把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有C 23A 24种分法,所以不同获奖情况种数为A 44+C 23A 24=24+36=60.答案:603.(2020·浙江东阳中学高三期中检测)用0,1,2,3,4这五个数字组成无重复数字的五位数,则组成的偶数的个数是________;恰有一个偶数数字夹在两个奇数数字之间的自然数的个数是________.解析:由五个数组成五位偶数,可分类个位数放0,2,4;当个位是0时,有A 44=24种,当个位是2时,有3A 33=18种,当个位是4时与个位是2时相同,则共有24+36=60种.当1和3两个奇数夹着0时,把这三个元素看做一个整体,和另外两个偶数全排列,其中1和3之间还有一个排列,共有2A 33=12种,1和3两个奇数夹着2时,同前面类似,只是注意0不能放在首位,共有2C 12A 22=8种,当1和3两个奇数夹着4时,也有同样多的结果.根据分类加法计数原理得到共有12+16=28种结果.答案:60 28核心素养系列21 逻辑推理、数学运算——分组分配问题中的易错点分组问题是同学们学习中的难点问题,在考试中不容易得分,在解题过程中容易掉入陷阱.解决这类问题的一个基本指导思想是先分组后分配.关于分组问题,有整体均分、部分均分和不等分组三种,无论分成几组,应注意的是只要有一些组中元素的个数相等,就存在均分现象.下面结合一些典型问题谈谈如何避免掉进分组问题中的陷阱.一、整体均分问题国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6名免费培养的教育专业师范毕业生,将其平均分到3所学校去任教,有________种不同的分配方法.【解析】 先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33A 33=90种分配方法.【答案】 90对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A nn (n 为均分的组数),避免重复计数.二、部分均分问题将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有2个房间无人选择且这2个房间不相邻的安排方式的种数为________.【解析】 先将5人分成三组(1,1,3或2,2,1两种形式),再将这三组人安排到3个房间,然后将2个房间插入前面住了人的3个房间形成的空档中即可,故安排方式共有⎝ ⎛⎭⎪⎫C 15C 14C 33A 22+C 25C 23C 11A 22·A 33·C 24=900种.【答案】 900本题属于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.三、不等分组问题将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法.【解析】 先把书分成三组,把这三组分给甲、乙、丙3名学生.先选1本,有C 16种选法;再从余下的5本中选2本,有C 25种选法;最后余下3本全选,有C 33种选法.故共有C 16·C 25·C 33=60种选法.由于甲、乙、丙是不同的3人,还应考虑再分配,故共有60A 33=360种分配方法.【答案】 360对于不等分组,只需先分组,后排列,注意分组时,任何组中元素的个数都不相等,所以不需要除以全排列数.总之,在解答分组问题时,一定要注意均匀分组与不均匀分组的区别,均匀分组不要重复计数.对于平均分组问题更要注意顺序,避免计数的重复或遗漏,抓住了以上关键点,就能避免掉进陷阱.[基础题组练]1.不等式A x8<6×A x-28的解集为( )A.[2,8] B.[2,6]C.(7,12) D.{8}解析:选D.由题意得8!(8-x)!<6×8!(10-x)!,所以x2-19x+84<0,解得7<x<12.又x≤8,x-2≥0,所以7<x≤8,x∈N*,即x=8.2.(2020·金华等三市部分学校高三期中)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96 B.84C.60 D.48解析:选B.法一:分三类:种两种花有A24种种法;种三种花有2A34种种法;种四种花有A44种种法.共有A24+2A34+A44=84.法二:按A-B-C-D顺序种花,可分A,C同色与不同色有4×3×(1×3+2×2)=84.3.(2020·温州八校第二次联考)若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有数位上的数字和为偶数,则这样的三位数的个数是( )A.540 B.480C.360 D.200解析:选D.由个位数字与十位数字之和为奇数知个位数字、十位数字1奇1偶,有C15C15A22=50种排法;所有数位上的数字和为偶数,则百位数字是奇数,有C14=4种满足题意的选法,故满足题意的三位数共有C14×C15C15A22=200(个).4.3本不同的数学书与3本不同的语文书放在书架同一层,则同类书不相邻的放法种数为( ) A.36 B.72C.108 D.144解析:选B.3本数学书的放法有A33种,将3本语文书插入使得语文数学均不相邻的插法有2A33种,故同类书不相邻的放法有2A33A33=2×6×6=72(种),故选B.5.(2020·金华十校期末调研)A、B、C、D、E五个人参加抽奖活动,现有5个红包,每人各摸一个,5个红包中有2个8元,1个18元,1个28元,1个0元,(红包中金额相同视为相同红包),则A、B两人都获奖(0元视为不获奖)的情况有( )A.18种B.24种C.36种D.48种解析:选C.A、B两人都获奖(0元视为不获奖)的情况有三类:即获奖的四人为:ABCD,ABCE,ABDE,在每类情况中,获奖的情况有C24·A22=12种,所以由分步乘法原理得:A、B两人都获奖(0元视为不获奖)的情况有3×12=36种.6.某中学高一学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现从中任选3人,要求这三人不能全是同一个班的学生,且在三班至多选1人,则不同选法的种数为( ) A.484 B.472C.252 D.232解析:选B.若三班有1人入选,则另两人从三班以外的12人中选取,共有C14C212=264种选法.若三班没有人入选,则要从三班以外的12人中选3人,又这3人不能全来自同一个班,故有C312-3C34=208种选法.故总共有264+208=472种不同的选法.7.如图,∠MON的边OM上有四点A1,A2,A3,A4,ON上有三点B1,B2,B3,则以O,A1,A2,A3,A4,B1,B2,B3中三点为顶点的三角形的个数为( )A.30 B.42C.54 D.56解析:选B.间接法:先从这8个点中任取3个点,有C38种取法,再减去三点共线的情形即可,即C38-C35-C34=42.8.(2019·宁波高考模拟)从1,2,3,4,5这五个数字中选出三个不相同数组成一个三位数,则奇数位上必须是奇数的三位数的个数为( )A.12 B.18C.24 D.30解析:选B.根据题意,要求奇数位上必须是奇数的三位数,则这个三位数的百位、个位为奇数,分2步进行分析:①在1、3、5三个奇数中任选2个,安排在三位数的个位和百位,有C23A22=6种情况,②在剩余的3个数字中任选1个,将其安排在三位数的十位,有C13=3种情况,则奇数位上必须是奇数的三位数有6×3=18个.9.(2020·温州中学高三模拟)身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则甲丁不相邻的不同的排法共有( )A.12 B.14C.16 D.18解析:选B.从矮到高的甲、乙、丙、丁、戊5人的身高可记为1,2,3,4,5.要求1,4不相邻.分四类:①先排4,5时,则1只有1种排法,2,3在剩余的两个位上,这样有A22A22=4种排法;②先排3,5时,则4只有1种排法,2,1在剩余的两个位上,这样有A22A22=4种排法;③先排1,2时,则4只有1种排法,3,5在剩余的两个位上,这样有A22A22=4种排法;④先排1,3时,则这样的数只有两个,即21534,43512,只有两种排法.综上共有4+4+4+2=14种排法,故选B.10.设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素的个数为( )A.60 B.90C.120 D.130解析:选D.设t=|x1|+|x2|+|x3|+|x4|+|x5|,t=1说明x1,x2,x3,x4,x5中有一个为-1或1,其他为0,所以有2×C15=10个元素满足t=1;t=2说明x1,x2,x3,x4,x5中有两个为-1或1,其他为0,所以有C25×2×2=40个元素满足t=2;t=3说明x1,x2,x3,x4,x5中有三个为-1或1,其他为0,所以有C35×2×2×2=80个元素满足t=3,从而,共有10+40+80=130个元素满足1≤t≤3.11.(2020·温州十五校联合体期末联考)用数字1、2、3、4、5构成数字不重复的五位数,要求数字1,3不相邻,数字2,5相邻,则这样的五位数的个数是________(用数字作答).解析:先把2,5捆挷有2种方法,再把它与4排列有2种排法,此时共有3个空隙供数字1、3插入有A23=6种方法,故这样的五位数的个数是2×2×6=24个.答案:2412.(2020·嘉兴市一中高考适应性考试)电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法有________种.解析:先排7个空座位,由于空座位是相同的,则只有1种情况,其中有6个空位符合条件,考虑三人的顺序,将3人插入6个空位中,则共有1×A36=120种情况,由于甲必须坐在三人中间,则有符合要求的坐法有1×120=40(种).3答案:4013.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有________对.解析:如图.它们的棱是原正方体的12条面对角线.一个正四面体中两条棱成60°角的有(C26-3)对,两个正四面体有(C26-3)×2对.又正方体的面对角线中平行成对,所以共有(C26-3)×2×2=48(对).答案:4814.如图A,B,C,D为海上4个小岛,要建立3座大桥,将4个小岛连接起来,则不同的建桥方案有________种.解析:法一:任2个岛之间建立1座桥,则共需C24=6座桥,现只建其中3座,有C36种建法,但如图(1)这样的建桥方式是不合题意的,类似这样的情况有C34种,则共有C36-C34=16种建桥方案.法二:依题意,满足条件的建桥方案分两类.第一类,如图(2),此时有C 14种方法.第二类,如图(3),此时有12A 44=12种方法. 由分类加法计数原理得,共有4+12=16种建桥方案.答案:1615.现从男、女共8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”“生态”“环保”三个夏令营活动,已知共有90种不同的方案,那么有男生________人、女生________人.解析:设男、女同学的人数分别为m 和n,则有,⎩⎪⎨⎪⎧m +n =8,C 2m ·C 1n ·A 33=90,即⎩⎪⎨⎪⎧m +n =8,C 2m ·C 1n =15. 由于m,n ∈N +,则m =3,n =5.答案:3 516.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有________种.解析:程序A 有A 12=2种结果,将程序B 和C 看作元素集团与除A 外的元素排列有A 22A 44=48(种),所以由分步乘法计数原理得,实验顺序的编排共有2×48=96种方法.答案:9617.规定C m x =x (x -1)…(x -m +1)m !,其中x∈R ,m 是正整数,且C 0x =1,这是组合数C m n (n,m 是正整数,且m≤n)的一种推广,则C3-15=________;若x>0,则x =________时,C 3x (C 1x )2取到最小值,该最小值为________.解析:由规定:C 3-15=(-15)×(-16)×(-17)3×2×1=-680,由C 3x (C 1x )2=x (x -1)(x -2)6x 2=16⎝ ⎛⎭⎪⎫x +2x -3. 因为x>0,x +2x≥22,当且仅当x =2时,等号成立, 所以当x =2时,得最小值22-36. 答案:-680 2 22-36[综合题组练]1.已知10件不同的产品中有4件是次品,现对它们进行测试,直至找出所有的次品为止.(1)若恰在第5次测试才测试到第1件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后就找出了所有次品,则这样的不同测试方法数是多少?解:(1)先排前4次测试,只能取正品,有A 46种不同的测试方法,再从4件次品中选2件排在第5次和第10次的位置上测试,有C 24·A 22=A 24种测试方法,再排余下4件的测试位置,有A 44种测试方法.所以共有A 46·A 24·A 44=103 680种不同的测试方法.(2)第5次测试的产品恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有C 14·C 16·A 44=576种不同的测试方法.2.现有男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)既要有队长,又要有女运动员.解:(1)任选3名男运动员,方法数为C 36,再选2名女运动员,方法数为C 24,共有C 36·C 24=120种方法.(2)法一:至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男,由分类加法计数原理可得总选法数为C 14C 46+C 24C 36+C 34C 26+C 44C 16=246(种).法二:“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有C 510-C 56=246(种).(3)当有女队长时,其他人任意选,共有C 49种选法,不选女队长时,必选男队长,其他人任意选,共有C 48种选法,其中不含女运动员的选法有C 45种,所以不选女队长时共有(C 48-C 45)种选法.所以既有队长又有女运动员的选法共有C 49+C 48-C 45=191(种).3.证明下列各题:(1)A k n +kA k -1n =A k n +1(k≤n ,n ≥0);(2)C k n C m -k n -k =C m n C k m (k≤m≤n ,n ≥0).证明:(1)左边=n !(n -k )!+k·n !(n -k +1)!=n !=(n +1)!(n +1-k )!=A k n +1=右边.(2)左边=n !k !(n -k )!·(n -k )!(m -k )!(n -m )!=n !k !(m -k )!(n -m )!, 右边=n !m !(n -m )!·m !k !(m -k )!=n !(n -m )!k !(m -k )!, 所以左边=右边.4.集合A ={x∈Z|x≥10},集合B 是集合A 的子集,且B 中的元素满足:①任意一个元素的各数位的数字互不相同;②任意一个元素的任意两个数位的数字之和不等于9.(1)集合B 中两位数和三位数各有多少个?(2)集合B 中是否有五位数?是否有六位数?(3)将集合B 中的元素从小到大排列,求第1 081个元素.解:将0,1,…,9这10个数字按照和为9进行配对,(0,9),(1,8),(2,7),(3,6),(4,5),B 中元素的每个数位只能从上面五对数中每对只取一个数构成.(1)两位数有C 25×22×A 22-C 14×2=72(个);三位数有C 35×23×A 33-C 24×22×A 22=432(个).(2)存在五位数,只需从上述五个数对中每对取一个数即可找出符合条件的五位数;不存在六位数,若存在,则至少要从一个数对中取出两个数,则该两个数字之和为9,与B 中任意一个元素的任意两个数位的数字之和不等于9矛盾,因此不存在六位数.(3)四位数共有C 45×24×A 44-C 34×23×A 33=1 728(个),因此第1 081个元素是四位数,且是第577个四位数,我们考虑千位,千位为1,2,3的四位数有3×C 34×23×A 33=576(个),因此第1 081个元素是4 012.。
第2讲排列与组合
一、选择题
1.2013年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有( )
A.1 440种 B.1 360种
C.1 282种 D.1 128种
解析采取对丙和甲进行捆绑的方法:
如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A22=1 440种,
如果“乙在正月初一值班”,则安排方案有:C11·A14·A22·A44=192种,
若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.
则不同的安排方案共有1 440-192-120=1 128(种).
答案 D
2.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有( ).
A.24种
B.60种
C.90种
D.120种
解析可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A35=60(种).
答案 B
3.如果n是正偶数,则C0n+C2n+…+C n-2n+C n n=( ).A.2n B.2n-1
C.2n-2D.(n-1)2n-1
解析(特例法)当n=2时,代入得C02+C22=2,排除答案A、C;
当n=4时,代入得C04+C24+C44=8,排除答案D.故选B.
答案 B
4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( ).
A.42
B.30
C.20
D.12
解析可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有A22A16=12种排法;若两个节目不相邻,则有A26=30种排法.由分类计数原理共有12+30=42种排法(或A27=42).
答案 A
5.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中
各至少选一门,则不同的选法共有( ).
A .30种
B .35种
C .42种
D .48种
解析 法一 可分两种互斥情况:A 类选1门,B 类选2门或A 类选2门,B 类选1门,共有C 13C 2
4+C 23C 1
4=18+12=30(种)选法.
法二 总共有C 3
7=35(种)选法,减去只选A 类的C 3
3=1(种),再减去只选B 类的C 3
4=4(种),共有30种选法. 答案 A
6.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为
( ). A .232 B .252
C .472
D .484
解析 若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C 1
4×C 1
4×C 1
4=64种,若2张同色,则有C 2
3×C 1
2×C 2
4×C 1
4=144种;若红色卡片有1张,剩余2张不同色,则有C 1
4×C 2
3×C 1
4×C 1
4=192种,乘余2张同色,则有C 1
4×C 1
3×C 2
4=72种,所以共有64+144+192+72=472种不同的取法.故选C. 答案 C 二、填空题
7.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种.
解析 分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法. 直接法:C 15C 2
4+C 25C 1
4=70. 间接法:C 3
9-C 3
5-C 3
4=70. 答案 70
8.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答).
解析 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是C 13A 3
3=18,而总的分配方法数是把五人分为三组再进行分配,方法数是C 15C 24C 2
2A 22A 3
3=90,故不同的
住宿安排共有90-18=72种. 答案 72
9.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人不同的出牌方法共有________种. 解析 出牌的方法可分为以下几类:(1)5张牌全部分开出,有A 5
5种方法;(2)2张2一起出,3张A 一起出,有A 2
5种方法;(3)2张2一起出,3张A 分3次出,有A 4
5种方法;(4)2
张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+C23A35+A35+C23A45=860(种).
答案860
10.小王在练习电脑编程,其中有一道程序题的要求如下:它由A,B,C,D,E,F六个子程序构成,且程序B必须在程序A之后,程序C必须在程序B之后,执行程序C后须立即执行程序D,按此要求,小王的编程方法有__________种.
解析对于位置有特殊要求的元素可采用插空法排列,把CD看成整体,A,B,C,D产生四个空,所以E有4种不同编程方法,然后四个程序又产生5个空,所以F有5种不同编程方法,所以小王有20种不同编程方法.
答案20
三、解答题
11. 7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种.
(1)A,B必须当选;
(2)A,B必不当选;
(3)A,B不全当选;
(4)至少有2名女生当选;
(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必
须由男生担任,班长必须由女生担任.
解(1)由于A,B必须当选,那么从剩下的10人中选取3人即可,故有C310=120种选法.
(2)从除去的A,B两人的10人中选5人即可,故有C510=252种选法.
(3)全部选法有C512种,A,B全当选有C310种,故A,B不全当选有C512-C310=672种选法.
(4)注意到“至少有2名女生”的反面是只有一名女生或没有女生,故可用间接法进
行.所以有C512-C15·C47-C57=596种选法.
(5)分三步进行;
第1步,选1男1女分别担任两个职务有C17·C15种选法.
第2步,选2男1女补足5人有C26·C14种选法.
第3步,为这3人安排工作有A33方法.由分步乘法计数原理,共有C17C15·C26C14·A33=12 600种选法.
12.要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?
(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生
甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.
解(1)C512-C57=771;
(2)C57+C15C47+C25C37=546;
(3)C22C310=120;
(4)C512-C22C310=672;
(5)C512-C510=540.
13.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:
(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?
(2)甲、乙均不能参加,有多少种选法?
(3)甲、乙两人至少有一人参加,有多少种选法?
(4)队中至少有一名内科医生和一名外科医生,有几种选法?
解(1)只需从其他18人中选3人即可,共有C318=816(种);
(2)只需从其他18人中选5人即可,共有C518=8 568(种);
(3)分两类:甲、乙中有一人参加,甲、乙都参加,
共有C12C418+C318=6 936(种);
(4)方法一(直接法):
至少有一名内科医生和一名外科医生的选法可分四类:
一内四外;二内三外;三内二外;四内一外,
所以共有C112C48+C212C38+C312C28+C412C18=14 656(种).
方法二(间接法):
由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C512+C58)=14 656(种).
14.已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.
(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有
多少种不同的测试方法?
(2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法?
解(1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回的逐个抽取测试.
第2次测到第一件次品有4种抽法;
第8次测到最后一件次品有3种抽法;
第3至第7次抽取测到最后两件次品共有A25种抽法;剩余4次抽到的是正品,共有A24A25A46=86 400种抽法.
(2)检测4次可测出4件次品,不同的测试方法有A44种,
检测5次可测出4件次品,不同的测试方法有4A34A16种;
检测6次测出4件次品或6件正品,则不同的测试方法共有4A35A26+A66种.
由分类计数原理,满足条件的不同的测试方法的种数为
A44+4A34A16+4A35A26+A66=8 520.。