考研数学二高等数学考察重点及题型总结
- 格式:docx
- 大小:10.55 KB
- 文档页数:3
研究生入学考试数二总结高等教学78%线性代数22%单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分Part 1.高等数学上册第一章:函数与极限考试重点题型必考题型:极限的求法第二章:导数与微分:隐函数及由参数方程所确定的函数的导数第六章:定积分的应用考试重点题型必考题型:定积分在几何学上的应用下册第八章:多元函数微分法及其应用:隐函数求导、多元函数求极值最值、多元复合函数求导第九章:重积分:二重积分累次积分法、二重积分的应用第十二章:微分方程【考研题型总结】专题一:二重积分(重点:累次积分法) ①二重积分的求法:⑴利用直角坐标系计算二重积分: 定限口诀:后积先定限(累次积分中后积变量的上下限均为常数) 限内画条线(该直线∥坐标轴且同向)先交下限写,(上下限或者为常数或者后积分变量的函数) 后交上限写。
选择积分次序的原则:①先积容易的积分,并能为后面积分创造条件; ②对积分区域D 的划分,块数越少越好。
积分区域的形式:①X-型区域D 的特点:穿过D 内部且平行于y 轴的直线与D 的边界相交不多于两点;X-型区域D 选用公式d d d x ba x x y Dy x f y x f ⎰⎰⎰⎰=]),([),()()(21ϕϕσ也可写成⎰⎰⎰⎰=ba x x y x Dd d d y x f y x f )()(21),(),(ϕϕσ 即先对y,后对x 的二次积分。
②Y-型区域D 的特点:穿过D 内部且平行于x 轴的直线与D 的边界相交不多于两点; Y-型区域D 选用公式d d d y dcy y x Dy x f y x f ⎰⎰⎰⎰=]),([),()()(21φφσ 也可写成⎰⎰⎰⎰=dcy y x y Dd d d y x f y x f )()(21),(),(φφσ 即先对x,后对y 的二次积分。
⑴利用极标系计算二重积分:专题二:定积分定积分的应用:(平面图形的面积、体积、平面图形的弧长)一、利用定积分求平面面积: ⑴直角坐标情形:由曲线)(x f y =(0)(≥x f )及直线)(,b a b x a x <==与x 轴所围成的曲边梯形的面积A 是定积分⎰=badx x f )(A ,其中被积表达式为dx x f )(就是直角坐标下的面积元素,它表示高为)(x f 、底为dx 的一个矩形面积。
高等数学知识点考研总结一、高等数学的知识点1.极限与微积分极限是微积分的基础,通过研究极限,可以建立微积分理论体系。
极限的概念是数学分析的核心,包括函数的极限、无穷小量、洛必达法则等内容。
微积分则是极限理论的应用,包括导数、积分、微分方程等内容。
2.多元函数微分学在高等数学中,多元函数微分学是一个重要的知识点。
它包括偏导数、全微分、多元函数极值、拉格朗日乘数法等内容。
多元函数微分学是微积分理论在多元空间中的拓展,对于理解多元函数的性质和求解实际问题中的应用具有重要意义。
3.级数与收敛性级数是数学分析中的一个重要概念,包括数项级数、函数项级数、幂级数、傅里叶级数等内容。
收敛性是级数理论的核心问题,包括级数收敛的判别法、柯西收敛判别法、绝对收敛和条件收敛等内容。
4.常微分方程常微分方程是现代数学中一个重要的研究方向,包括一阶微分方程、高阶微分方程、线性微分方程、非线性微分方程等内容。
常微分方程的理论和方法在科学与工程领域有着广泛的应用,对于建模和求解实际问题具有重要意义。
以上是高等数学中的一些重要知识点,它们构成了数学分析的基本理论体系,对于理解数学的基本概念、方法和技巧具有重要的意义。
二、高等数学的考试重点在高等数学的考研过程中,以下是一些较为重要的考试重点知识点。
1. 极限和微分极限和微分是高等数学的基本理论,对于研究生入学考试而言,它们是比较重要的考试重点。
在考试中,可能涉及到函数的极限、无穷小量、导数、微分等内容,考生需要熟练掌握相应的定义、定理和求解方法。
2. 积分和微分方程积分和微分方程是微积分的重要应用,也是研究生入学考试的考试重点。
在考试中,可能涉及到不定积分、定积分、导数与积分的关系、常微分方程的基本理论和方法等内容,考生需要对这些知识点有所掌握。
3. 级数与收敛性级数与收敛性是数学分析中的一个重要概念,也是研究生入学考试的考试重点。
在考试中,可能涉及到数项级数、函数项级数、级数收敛的判别法等内容,考生需要对级数理论有所了解。
高等数学(数二>一.重点知识标记高等数学科目大纲章节知识点题型重要度等级高等数学第一章函数、极限、连续1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★2 .函数连续的概念、函数间断点的类型3 .判断函数连续性与间断点的类型★★★第二章一元函数微分学1 .导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系★★★★2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★第三章一元函数积分学1 .积分上限的函数及其导数变限积分求导问题★★★★★2 .有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★第四章多元函数微分学1 .隐函数、偏导数、的存在性以及它们之间的因果关系2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系★★3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★第五章多元函数积分学1. 二重积分的概念、性质及计算2.二重积分的计算及应用★★第六章常微分方程1.一阶线性微分方程、齐次方程,2.微分方程的简单应用,用微分方程解决一些应用问题★★★★一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。
二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。
一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。
考研数学二重点考研数学二是众多考研学子需要攻克的重要科目之一。
对于许多考生来说,明确数学二的重点内容,制定有针对性的复习策略,是取得理想成绩的关键。
以下将详细介绍考研数学二的重点部分。
一、高等数学1、函数、极限、连续函数的概念、性质和各种类型的函数(如幂函数、指数函数、对数函数、三角函数等)是基础。
极限的计算方法,包括四则运算、等价无穷小替换、洛必达法则等,是必考的重点。
连续性的概念以及间断点的类型判断也经常出现。
2、一元函数微分学导数的定义、几何意义和基本公式要熟练掌握。
利用导数判断函数的单调性、极值和最值,以及函数的凹凸性和拐点,是常见的题型。
此外,微分中值定理(如罗尔定理、拉格朗日中值定理、柯西中值定理)的应用也是重点。
3、一元函数积分学不定积分和定积分的计算方法,包括换元法、分部积分法等,要熟练运用。
定积分的应用,如求平面图形的面积、旋转体的体积、曲线的弧长等,也是重要的考点。
4、多元函数微分学多元函数的偏导数、全微分的概念和计算方法,以及多元函数的极值和条件极值问题,需要重点关注。
5、常微分方程常见的一阶和二阶常微分方程的解法,如可分离变量方程、齐次方程、线性方程等,要能够熟练求解。
二、线性代数1、行列式行列式的性质和计算方法是基础,包括展开法则、三角化法等。
2、矩阵矩阵的运算(加法、乘法、转置等)、逆矩阵的求法、矩阵的秩等是重点。
3、向量向量组的线性相关性判断、极大线性无关组的求法,以及向量空间的基本概念。
4、线性方程组线性方程组的解的结构、求解方法(高斯消元法),以及有解的判定条件。
5、特征值和特征向量矩阵的特征值和特征向量的求法,以及相似对角化的条件和方法。
三、复习方法1、基础知识的巩固对于重点概念、定理和公式,要反复理解和记忆,确保能够熟练运用。
2、多做练习题通过大量的练习题,熟悉各种题型和解题方法,提高解题速度和准确性。
3、总结归纳对做过的题目进行总结归纳,找出解题的规律和技巧,形成自己的解题思路。
考研数学二知识点考研数学二知识点概述一、高等数学1. 函数、极限与连续- 函数的概念与性质- 数列的极限- 函数的极限与连续性- 无穷小与无穷大- 极限的运算法则2. 一元函数微分学- 导数的定义与几何意义- 常见函数的导数- 高阶导数- 隐函数与参数方程的导数- 微分的定义与应用3. 一元函数积分学- 不定积分的概念与性质- 基本积分表- 定积分的概念与性质- 定积分的应用- 微分方程的解法4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 拉格朗日乘数法- 梯度、方向导数与曲率5. 多元函数积分学- 二重积分与三重积分- 重积分的变量替换法- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯公式6. 无穷级数- 级数的基本概念与性质- 正项级数的判别法- 交错级数与绝对收敛级数- 幂级数与泰勒级数- 傅里叶级数二、线性代数1. 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用2. 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 分块矩阵3. 向量空间- 向量空间的概念与性质 - 子空间与线性无关- 向量的内积与正交性- 向量空间的基与维数4. 线性方程组- 线性方程组的解的结构 - 克莱姆法则- 线性方程组的解集与秩 - 线性方程组的求解方法5. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的求解 - 矩阵的对角化6. 二次型- 二次型的标准型- 二次型的正定性- 惯性定理三、概率论与数理统计1. 随机事件与概率- 随机事件的概念与性质 - 概率的定义与性质- 条件概率与独立性- 全概率公式与贝叶斯公式2. 随机变量及其分布- 随机变量的概念- 离散型与连续型分布- 随机变量的数学期望与方差- 大数定律与中心极限定理3. 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 协方差与相关系数4. 统计量与抽样分布- 统计量的概念与性质- 抽样分布的概念- 常见的抽样分布5. 参数估计- 点估计与区间估计- 估计量的性质- 置信区间的构建6. 假设检验- 假设检验的概念与基本步骤- 显著性水平与P值- 单样本与双样本假设检验- 卡方检验与t检验以上是考研数学二的主要知识点概述,考生在备考过程中需要对这些知识点有深入的理解和熟练的掌握。
高等数学2知识点总结和例题高等数学2课程主要包含了微积分的高级内容,如多元函数微积分、向量场、曲线积分、面积积分、常微分方程等。
本文将对这些知识点进行总结,并提供一些例题和解答,以供大家参考。
1. 多元函数微积分1.1 偏导数多元函数的偏导数定义:设函数z=f(x,y),在点(x0,y0)的邻域内,当y=y0时,f(x,y)关于x的导数存在,则称该导数为函数f(x,y)在点(x0,y0)处的偏导数,记为fx(x0,y0)。
偏导数的计算方法:对于多元函数z=f(x,y),求其在点(x0,y0)处的偏导数fx(x0,y0)时,将y视为常数,对x求一阶导数即可。
1.2 全微分全微分的定义:设函数z=f(x,y)在点(x0,y0)连续且存在偏导数,则称与∆z=f(x,y)-f(x0,y0)满足的关系式∆z=A∆x+B∆y+o(∆r),其中A=fx(x0,y0),B=fy(x0,y0),∆r=√[(∆x)^2+(∆y)^2]称作函数z=f(x,y)在点(x0,y0)处的全微分。
全微分的计算方法:计算函数z=f(x,y)在点(x0,y0)处的全微分时,首先求出其偏导数,然后用偏导数构造微分式,即dz=fx(x0,y0)dx+fy(x0,y0)dy。
1.3 链式法则链式法则的定义:设函数z=f(x,y)在点(x0,y0)有连续的偏导数,并且u=g(x,y)在点(u0,v0)有连续的偏导数,则复合函数z=f[g(x,y)]在点(x0,y0)具有偏导数,且有:∂z/∂x = (∂z/∂u)·(∂u/∂x) + (∂z/∂v)·(∂v/∂x)∂z/∂y = (∂z/∂u)·(∂u/∂y) + (∂z/∂v)·(∂v/∂y)其中(∂u/∂x)、(∂u/∂y)、(∂v/∂x)、(∂v/∂y)可以由u=g(x,y)的偏导数求得,而(∂z/∂u)、(∂z/∂v)可以由z=f(u,v)的偏导数求得。
考研数学二知识点总结3篇考研数学二知识点总结3篇学习需要具备逆境和挑战的锻炼精神,能够从困难和挫折中成长和进步。
学习需要立足当下,同时注重长远规划和发展,具备未来感和战略眼光。
下面就让小编给大家带来考研数学二知识点总结,希望大家喜欢!考研数学二知识点总结1高数第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵考研数学二知识点总结2一、高等数学同济六版高等数学中除了第七章微分方程考带号的伯努利方程外,其余带号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;二、线性代数数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;三、数学二不考概率与数理统计研究典型题型对于数二的同学来说,需要做大量的试题。
数学二高数考试范围
数学二的高等数学考试范围通常包括以下内容:
1.函数、极限与连续性:包括函数极限的定义与性质,无穷小与无穷大,无穷大与无穷小的比较,函数连续的定义及其性质等。
2.导数与微分:包括导数的定义与性质,导数的运算法则,高阶导数,隐函数求导,导数应用题,微分的定义与性质等。
3.微分中值定理:包括拉格朗日中值定理,柯西中值定理等。
4.泰勒公式与函数的近似计算。
此外,常数级数的敛散性也在数学二的考试范围内。
线性代数方面,数学二主要考察行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型等。
2017考研数学二高等数学考察重点及题型总结
来源:文都图书
考研数学复习要了解各部分重点及考察题型,这样有针对性的复习有助于节省时间,提高效率。
高等数学是数学的重难点,考生要重点复习,下面,我们一起来了解一下考研数学二高等数学考察重点及题型总结。
2017考研数学二高等数学考察重点及题型总结
上述对数学二高等数学各个章节的重点内容,进行了整理,标注,并且列出了将要考察的题型,希望考生们可以认真对待,汤家风编写的《2017考研数学硕士研究生入学考试高等数学辅导讲义》这本书收录了考研高数的众多考点,并且对每个重点内容,都进行了考察,希望考生们可以好好利用,加油。