系统的时域分析
- 格式:pdf
- 大小:61.39 KB
- 文档页数:2
实验1 利用matlab进行系统的时域分析一.实验目的:1.了解离散时间序列卷积与的matlab实现;2.利用卷积与求解系统的零状态响应;二.实验原理:1.连续时间系统零状态响应的求解连续时间LTI系统以常系数微分方程描述,系统的零状态响应可通过求解初始状态为零的微分方程得到。
在MATLAB中,控制系统工具箱提供了一个用于求解零初始状态微分方程数值解的函数lsim。
其调用方式为y= lsim( sys,x,t)式中t表示计算系统响应的抽样点向量,x就是系统输入信号向量,sys就是连续时间LTI系统模型,用来表示微分方程、差分方程、状态方程。
在求解微分方程时,微分方程的连续时间LTI系统模型sys要借助tf函数获得,其调用方式为sys= tf(b,a)式中b与a分别为微分方程右端与左端各项的系数向量。
例如对3阶微分方程+++=+++可用a=[ a3, a2, a1, a0];b=[b3 ,b2, b1,b0]; sys=tf( b,a)获得连续时间LTI模型。
注意微分方程中为零的系数一定要写入向量a与b中。
【例2-1】描述某力学系统中物体位移y(t)与外力f(t)的关系为++y(t)=x(t)物体质量m=l kg,弹簧的弹性系数ks= 100 N/m,物体与地面的摩擦系数fd=2 N·s/m,系统的初始储能为零,若外力x(t)就是振幅为10、周期为1的正弦信号,求物体的位移y(t)。
解:由已知条件,系统的输入信号为x(t)=10sin(2πt),系统的微分方程为++100y(t)=x(t)计算物体位移y(t)的MATLAB程序如下:%program2_1微分方程求解ts=0;te=5;dt=0、01;sys=tf([1],[1 2 100]);t=ts:dt:te;x=10*sin(2*pi*t);y=lsim(sys,x,t);plot(t,y);xlabel('Time(sec)')ylabel('y(t)')-0.25-0.2-0.15-0.1-0.0500.050.10.150.2Time(sec)y (t )图2-1系统的零状态响应2、连续时间系统冲激响应与阶跃响应的求解在MATLAB 中,求解系统冲激响应可应用控制系统工具箱提供的函数impulse,求解阶跃响应可利用函数step 。
系统时域分析实验报告系统时域分析实验报告一、引言时域分析是电子工程中的重要内容之一,它通过对系统在时间上的响应进行观察和分析,可以帮助我们了解系统的动态特性。
本实验旨在通过对不同系统的时域分析,探讨系统的稳定性、阶数、零极点等特性。
二、实验目的1. 了解时域分析的基本概念和方法;2. 掌握系统的稳定性判断方法;3. 学习如何通过时域分析确定系统的阶数;4. 理解系统的零极点对系统响应的影响。
三、实验原理1. 系统的稳定性判断系统的稳定性是指当输入信号有限时,系统输出是否有界。
常用的判断方法有零极点判断法和频率响应判断法。
2. 系统的阶数确定系统的阶数是指系统传递函数中最高次幂的阶数。
通过观察系统的单位阶跃响应或单位冲激响应,可以确定系统的阶数。
3. 零极点对系统响应的影响系统的零点和极点决定了系统的传递特性。
零点是使系统增益为零的点,极点是使系统增益无穷大的点。
零点和极点的位置和数量决定了系统的稳定性、阶数和频率响应。
四、实验步骤1. 确定实验所用系统的传递函数;2. 绘制系统的单位阶跃响应曲线;3. 通过观察单位阶跃响应曲线,判断系统的稳定性;4. 根据单位阶跃响应曲线的特点,确定系统的阶数;5. 分析系统的零极点位置和数量对系统响应的影响。
五、实验结果与分析以某一系统为例,实验得到其单位阶跃响应曲线如下图所示。
[插入实验结果图]通过观察单位阶跃响应曲线,我们可以看到系统的输出在一定时间后趋于稳定,且没有出现振荡现象。
因此,可以判断该系统是稳定的。
根据单位阶跃响应曲线的特点,我们可以看到系统的输出在一定时间后达到了稳态值,并且没有超过该稳态值。
根据阶跃响应曲线的形状,我们可以判断该系统的阶数为一阶。
通过对系统的传递函数进行分析,我们可以确定系统的零点和极点的位置和数量。
进一步分析可以得出,系统的零点和极点的位置和数量对系统的稳定性、阶数和频率响应都有重要影响。
六、实验总结通过本次实验,我们了解了时域分析的基本概念和方法,掌握了系统的稳定性判断方法和阶数确定方法。
线性系统的时域分析实验报告线性系统的时域分析实验报告引言:线性系统是控制理论中的重要概念,它在工程领域中有广泛的应用。
时域分析是研究线性系统的一种方法,通过对系统输入和输出的时域信号进行观察和分析,可以得到系统的动态特性。
本实验旨在通过对线性系统进行时域分析,探究系统的稳定性、阶数和频率响应等特性。
实验一:稳定性分析稳定性是线性系统的基本性质之一,它描述了系统对于不同输入的响应是否趋于有界。
在本实验中,我们选取了一个简单的一阶系统进行稳定性分析。
首先,我们搭建了一个一阶系统,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一个单位阶跃信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后稳定在一个有限的值上,没有出现发散的情况。
因此,我们可以判断该系统是稳定的。
实验二:阶数分析阶数是线性系统的另一个重要特性,它描述了系统的动态响应所需的最小延迟时间。
在本实验中,我们选取了一个二阶系统进行阶数分析。
我们搭建了一个二阶系统,其传递函数为H(s) = 1/(s^2+2s+1)。
然后,我们输入了一个正弦信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后才稳定下来。
通过进一步分析,我们发现系统的输出波形具有两个振荡周期,这表明系统是一个二阶系统。
实验三:频率响应分析频率响应是线性系统的另一个重要特性,它描述了系统对于不同频率输入信号的响应情况。
在本实验中,我们选取了一个低通滤波器进行频率响应分析。
我们搭建了一个低通滤波器,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一系列不同频率的正弦信号,观察系统的输出。
实验结果显示,随着输入信号频率的增加,系统的输出幅值逐渐减小,表明系统对高频信号有较强的抑制作用。
这一结果与低通滤波器的特性相吻合。
结论:通过以上实验,我们对线性系统的时域分析方法有了更深入的了解。
系统时域响应分析实验思考及建议从开始的系统时域分析,到频域分析,虽然形式上可能会有些诧异,但是不可否认,他们的思路都是一致的,即将信号分解成一个个的基信号,然后研究系统对于基信号的响应,再将这些所有的基信号的响应叠加,便是系统对于一个完整的复杂信号的响应。
系统时域分析:1)将信号分解成一个个的冲激函数(注意,是冲激函数,而不是一个个单独的冲激,函数的定义是在整个的时间域上定义的),因此,只要我们知道了系统对于一个冲激函数的响应函数,我们就能够求出系统对于整个信号函数的响应函数;2)时域分析的系统特性,就是由微分方程表示,通过微分方程,我们能够求得系统的冲激响应,即系统对于冲激函数的响应函数h(t);3)此时,将完整复杂信号(已经分解好了的信号),通过系统,就好像流水线上加工产品一样,让整个信号通过,然后对每一个冲激函数进行加工,并且对于不同的冲激函数,做不同的个性化加工,这里的个性化加工,就是根据冲激函数中的冲激在时间轴上位置,如果冲激在时间轴上0点左边t0的位置上,并且冲激的幅值是a,那么对应的加工结果就是个性化了的冲激函数的响应函数a*h(t+t0),对每个分解的基信号(即冲激函数)都做了这样的个性化加工以后,再将所有的加工结果相加,最终得到我们想要的系统对于整个信号的响应。
这就是我们所说的卷积的过程,即y(t)=cov[f(t),h(t)]。
系统频域分析:开始已经说过,系统的频域分析跟系统的时域分析如出一辙,甚至更为简单方便,这也就是为什么我们更愿意通过频域分析信号系统的原因,还有一个原因就是通过频域分析系统在物理上更为直观,我们很容易通过频域看出,系统对信号做了怎样的手脚(具体来说,就是,系统对信号各个频率分量做了怎样的处理)。
1)将信号分解成一个个不同频率的虚指数信号函数(注意,这里也是函数,拥有完整的时域轴),因此,只要我们知道了系统对于一个虚指数信号函数的响应函数,我们就能够求出系统对于整个信号的响应;2)我们将表示系统特性的微分方程,通过将输入定义为虚指数信号函数,惊讶的发现,系统的输出形式任然是虚指数信号函数,只不过多了一个加权值,这个加权值就是系统冲激响应h(t)的傅里叶变换H(jw)在这个虚指数信号函数(关于t的函数)对应频率w0的值。
控制系统的时域与频域分析及应用研究控制系统的时域与频域分析是控制工程中的两个重要方面,它们为我们研究和设计控制系统提供了强大的工具。
本文将探讨控制系统的时域与频域分析的基本概念、方法和应用,并讨论它们在实际工程中的重要性。
控制系统的时域分析是对系统在时间域内的行为进行分析和研究。
时域分析的主要目标是研究系统的稳定性、响应速度和稳态误差等特性。
在时域分析中,我们通常关注系统的脉冲响应、阶跃响应和频率响应等。
通过对这些响应的分析,我们可以了解系统对输入信号的处理方式和输出响应的特点。
时域分析的基本方法包括传递函数法、状态空间法和信号流图法等。
其中,传递函数法是最常用的方法之一。
它通过求解系统的传递函数,将输入信号和输出响应之间的关系用数学表达式表示出来。
传递函数法可以帮助我们分析系统的稳定性、零极点分布和频率响应等重要特性。
另外,状态空间法可以帮助我们直观地理解系统的动态特性,以及对多输入多输出系统进行分析和设计。
信号流图法则可以帮助我们将系统的结构图形象地表示出来,从而更好地理解和分析系统的性能。
除了时域分析,控制系统的频域分析也是十分重要的。
频域分析是通过将系统的输入和输出信号转换为频率域内的频谱图来研究系统的动态特性。
频域分析的主要目标是研究系统的频率响应、幅频特性和相频特性等。
在频域分析中,我们可以使用频率响应法、傅里叶变换法和拉普拉斯变换法等方法来分析系统。
其中,频率响应法是最常用的分析方法之一。
它通过将系统的输入和输出信号的频谱进行比较,得出系统的幅度响应和相位响应。
频率响应法可以帮助我们分析系统的频率特性,如共振频率、带宽和滤波特性等,从而指导系统的设计和优化。
控制系统的时域与频域分析在实际工程中具有广泛的应用。
首先,时域分析可以通过对系统的阶跃响应进行研究,帮助我们评估系统的稳态误差和响应速度,从而指导系统的控制策略和参数调节。
其次,频域分析可以通过对系统的幅度响应和相位响应进行研究,帮助我们评估系统的稳定性和抑制高频噪声的能力。
matlab系统的时域分析实验报告Matlab系统的时域分析实验报告引言:时域分析是信号处理中的重要内容,它可以帮助我们理解信号的时序特性以及信号在时间上的变化规律。
Matlab作为一款强大的数学软件,提供了丰富的工具和函数,可以方便地进行时域分析实验。
本实验报告将介绍利用Matlab进行时域分析的方法和实验结果。
实验目的:1. 了解时域分析的基本概念和方法;2. 掌握Matlab中时域分析的相关函数和工具;3. 进行实际信号的时域分析实验,并分析实验结果。
实验步骤:1. 信号生成:利用Matlab生成一个正弦信号,设置合适的频率和振幅。
2. 信号采样:将生成的信号进行采样,得到离散的信号序列。
3. 时域分析:利用Matlab中的fft函数对离散信号进行傅里叶变换,得到信号的频谱。
4. 信号重构:利用Matlab中的ifft函数对频谱进行逆傅里叶变换,将信号重构回时域。
5. 分析实验结果:比较原始信号和重构信号的差异,分析由于采样引起的信号失真。
实验结果:经过实验,我们得到了以下结果:1. 通过Matlab生成的正弦信号具有一定的频率和振幅,可以在时域上观察到信号的周期性变化。
2. 通过采样得到的离散信号序列可以用于进行时域分析。
3. 利用Matlab中的fft函数对离散信号进行傅里叶变换,得到信号的频谱图。
频谱图可以展示信号在不同频率上的能量分布情况。
4. 利用Matlab中的ifft函数对频谱进行逆傅里叶变换,将信号重构回时域。
重构的信号与原始信号在时域上基本一致,但可能存在细微的差异。
5. 由于采样引起的信号失真,重构的信号可能会与原始信号存在一定的差异。
差异的大小与采样频率有关,采样频率越高,失真越小。
讨论与结论:本实验通过Matlab进行时域分析,得到了信号的频谱图并进行了信号的重构。
实验结果表明,Matlab提供的时域分析工具和函数能够方便地进行信号分析和处理。
通过时域分析,我们可以更好地理解信号的时序特性,并对信号进行处理和优化。
28
实验二 系统的时域分析
一、 实验目的:
1、 掌握一阶系统和二阶系统的的非周期信号响应。
2、 理解二阶系统的无阻尼、欠阻尼、临界阻尼和过阻尼。
3、 掌握分析系统的稳定性、瞬态过程和稳态误差。
4、 理解高阶系统的主导极点对系统特性的影响。
5、理解系统的零点对系统动态特性的影响。
二、实验内容:
1、 系统的闭环传递函数为:()1+=
Ts K s G 分别调节T K 、, 仿真系统的阶跃响应,得出系统参数对系统性能的影响。
2、 单位负反馈系统的开环传递函数为:())
2(8+=s s s G ,求闭环系统的单位阶跃响应,标出系统的r p s t t t 、、,并计算最大超调量和稳态误差。
3、 给定典型二阶系统的自然频率8=n w ,仿真当
0.2,5.1,0.1,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0=ζ时的单位阶跃响应,并得出参数变化时对系统性能的影响。
4、求下列系统的单位阶跃响应和单位脉冲响应:
[]11221210.50.510010x x u x x x y x −−⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦
&& 比较不同输入下系统的响应曲线,得出相应的结论,并进行验证。
5、开环系统的传递函数为()()()
200520000++=s s s s G ,求其单位阶跃响应, 并比较与开环系统: ()()
5100+=s s s G 的差别,得出相应的结论。
6、判断系统的传递函数如下,判断其稳定性:
29 (1)()24
5035102424723423+++++++=s s s s s s s s G (2)()9
876543224247234567823+++++++++++=s s s s s s s s s s s s G 7、比较下面两闭环系统的单位阶跃响应,并得出零点对系统动态响应的影响。
(1)()10
5.2102++=
s s s G (2)()()105.21.01002+++=s s s s G 三、实验报告要求:
1、 记录各实验项目的实验结果(包括数据,图形)。
2、 给出各实验项目得到的结论,并进行分析比较。
3、本实验中的心得体会。