连续时间系统的时域分析卷积法
- 格式:ppt
- 大小:1.45 MB
- 文档页数:36
信号与系统杨晓非课后答案【篇一:《信号与系统》考试大纲】>(一)信号与系统的基本概念信号的基本概念及其分类,信号的表示方法,典型连续信号及其性质,典型离散信号及性质,信号的基本运算和变换,系统的基本概念及其分类,线性非时变系统及其性质,系统性质的判定,连续系统与离散系统的数学模型,离散系统数学模型的建立,连续系统的时域模拟。
(二)连续系统的时域卷积分析法 lti连续系统的时域经典分析法。
冲激响应、阶跃响应及其与冲激响应的关系;任意波形信号的时域分解与卷积积分的定义,卷积积分的图解法和阶跃函数法、求解卷积的运算性质,lti连续系统零状态响应的卷积分析法,运用杜阿密尔积分求解系统的零状态响应。
lti离散系统的时域经典分析法。
单位序列响应、阶跃响应及其与单位序列响应的关系;任意波形离散信号的时域分解与积卷和的定义,卷积和的图解法、时限序列卷积和的不进位乘法和算式法求解、卷积和的运算性质,lti离散系统零状态响应的卷积和分析法。
(三)信号的频谱分析与傅里叶变换分析法周期信号表为傅里叶级数,周期信号的频谱及其特点,周期信号的功率谱。
非周期信号的傅里叶变换,频谱密度及其特点,典型信号的傅里叶变换,傅里叶变换的性质,周期信号的傅里叶变换,能量谱密度和功率谱密度。
频域系统函数h(j?),lti连续系统零状态响应的傅里叶变换分析法,系统无失真传输的条件;无失真传输系统和理想低通滤波器的冲激响应与阶跃响应,抽样定理。
(四)拉普拉斯变换分析法拉普拉斯变换及其收敛域,单边拉普拉斯变换,典型信号的单边拉普拉斯变换,单边拉普拉斯变换的性质,求拉普拉斯反变换的部分分式展开法和留数法,单边拉普拉斯变换与傅里叶变换的关系。
微分方程的拉普拉斯变换解,lti连续系统的s域分析法,电路的s 域分析法,系统函数h(s)在系统分析中的意义及求取,系统信号流图及其化简与模拟。
系统函数的零、极点概念,零极点图,连续系统函数h(s)的零极点分布与系统的时间特性、频率特性、因果性以及稳定性的定性关系,系统稳定性的判别。
第二章 连续时间系统的时域分析1.已知连续时间信号1()e ()t f t u t -=和2()e ()t f t u t =-,求卷积积分12()()()f t f t f t =*,并画出()f t 的波形图。
解:1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰反褶1()f τ得1()f τ-,右移t 得11[()]()f t f t ττ--=-,作出2()f τ图形及不同t 取值的1()f t τ-图形,由此可得:当0t ≤时,21()e e ee e 2ttt tt f t d d τττττ---∞-∞===⎰⎰当0t ≥时,0021()e e e e e 2t t t f t d d τττττ----∞-∞===⎰⎰综上,||111()e ()e ()e 222t t t f t u t u t --=-+=()f t 是个双边指数函数。
讨论:当1()f t 、2()f t 为普通函数(不含有()t δ、()t δ'等)时,卷积结果()f t 是一个连续函数,且()f t 非零取值区间的左边界为1()f t 、2()f t 左边界之和,右边界为1()f t 、2()f t 右边界之和,也就是说,()f t 的时宽为1()f t 、2()f t 时宽之和。
τttt2.计算题图2(a )所示函数)(1t f 和)(2t f 的卷积积分)()()(21t f t f t f *=,并画出)(t f 的图形。
解法一:图解法1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰其中1()f t τ-的波形见题图2(b),由此可得: 当10t +≤,即1t ≤-时,()0f t = 当011t ≤+≤,即10t -≤≤时,120()2(1)t f t d t ττ+==+⎰当11t +≥但10t -≤,即01t ≤≤时,1()21f t d ττ==⎰当011t ≤-≤,即12t ≤≤时,121()21(1)t f t d t ττ-==--⎰当11t -≥,即2t ≥时,()0f t =综上,220,1,2(1),10()1,011(1),12t t t t f t t t t ≤-≥⎧⎪+-≤≤⎪=⎨≤≤⎪⎪--≤≤⎩ ()f t 波形见题图2(c)。
第3章连续系统的时域分析本章内容LTI系统的时域分析方法线性微分方程的经典解法零输入-零状态微分算子与传输算子冲激响应和阶跃响应冲激响应阶跃响应卷积积分及其应用卷积积分的概念卷积积分的性质卷积积分在LTI系统分析中的应用LTI 连续系统的时域分析1)建立系统数学模型;2)求解线性微分方程。
由于在其分析过程涉及的函数变量均为时间t ,故称为时域分析法。
这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。
其过程可以归结为:线性微分方程的经典解法)()()()()()()()(01)1(1)(01)1(1)(t f b t f b t f b t f b t y a t y a t ya t y m m m m n n n +′+++=+′+++−−−−L L 微分方程的经典解:y (t ) = y c (t ) + y p (t )(完全解)(齐次解)(特解)经典解法-齐次解不同特征根对应的齐次解的解。
y c (t )的函数形式由上述微分方程的特征根确定。
齐次解是齐次微分方程0)()()()(01)1(1)(=+′+++−−t y a t y a t y a t y n n n L经典解法-齐次解(续)=)(t y c 例如::则微分方程的齐次解为个根是单根,其余,即有重根,是特征方程的假设 - 211r n r r λλλλ===L ∑+=+nr j tj j e c 1λ∑=−r i t i r i i e t c 1λ经典解法-特解特解的函数形式与激励函数的形式有关。
表3-1 不同激励对应的特解A(常数)B(常数)线性微分方程的经典解法1)根据齐次方程的特征根求齐次解;2) 根据激励信号的函数形式求特解;3) 将特解代入原微分方程,根据方程两端对应项系数相等,求得特解中的待定系数;4) 将系统的n个初始条件代入全解中,确定齐次解中n个待定系数。
线性微分方程的经典解法(续)激励信号在t =0时刻接入系统:由于激励信号的作用,响应y (t )及其各阶导数有可能在t =0时刻发生跳变,为区分跳变前后的数值,我们用0-表示激励接入之前的瞬间,并称此时刻为“起始时刻”;而用0+表示激励接入之后的瞬间,并称此时刻为“初始时刻”。
第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。
2.来自元件伏安关系的约束:与元件的连接方式无关。
例2-1 如图2-1所示电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。
因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。
(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。
时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分方程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。
状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。
解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。
方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。
本题也可以用卷积积分求系统的零状态响应。
方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。
第二章 连续系统的时域分析一、单项选择题X2.1(东南大学2002年考研题)一线性时不变连续时间系统,其在某激励信号作用下的自由响应为(e -3t +e -t )ε(t ),强迫响应为(1-e -2t )ε(t ),则下面的说法正确的是 。
(A )该系统一定是二阶系统 (B )该系统一定是稳定系统(C )零输入响应中一定包含(e -3t +e -t )ε(t ) (D )零状态响应中一定包含(1-e -2t )ε(t )X2.2(西安电子科技大学2005年考研题)信号f 1(t )和 f 2(t ) 如图X2.2所示,f =f 1(t )* f 2(t ),则 f (-1)等于 。
(A )1 (B )-1 (C )1.5 (D )-0.5图X2.2X2.3(西安电子科技大学2005年考研题)下列等式不成立的是 。
[])()(*)()()()(*)()()(*)()(*)()()(*)()(*)()(2121210201t f t t f D t f t t f C t f dt d t f dt d t f t f dt d B t f t f t t f t t f A ='='⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==+-δδ答案:X2.1[D],X2.2[C],X2.3[B]二、判断与填空题T2.1(北京航空航天大学2001年考研题)判断下列说法是否正确,正确的打“√”,错误的打“×”。
(1)若)(*)()(t h t f t y =,则)2(*)2(2)2(t h t f t y =。
[ ] (2)如果x (t )和y (t )均为奇函数,则x (t )*y (t )为偶函数。
[ ] (3)卷积的方法只适用于线性时不变系统的分析。
[ ] (4)若)(*)()(t h t f t y =,则)(*)()(t h t f t y --=-。
[ ](5)两个LTI 系统级联,其总的输入输出关系与它们在级联中的次序没有关系。