放线菌分离
- 格式:ppt
- 大小:53.50 KB
- 文档页数:7
放线菌筛选的一般方法1.放线菌样本的收集:可以从自然环境中收集土壤、植物、水体等样本,也可以从实验室中保存的菌种库中选取菌种作为筛选对象。
2.放线菌的分离:将收集到的样本通过稀释涂布、均匀涂布等方法进行分离。
将分离出的放线菌菌落定植于选择性培养基上,利用差异营养需求、抗生素抑制等原理,筛选出纯培养基。
3.放线菌培养:将分离出的纯净菌株接种到适宜的培养基上进行培养,包括液体培养和固体培养。
液体培养可以用于代谢产物的筛选,固体培养主要用于菌株保存和鉴定。
4.代谢产物的筛选:通过对放线菌培养液或菌体提取物的分离、纯化和结构鉴定,筛选出具有生物活性的代谢产物。
常用的筛选方法包括生物测定法、波谱分析法等。
其中,生物测定法是通过对目标活性的生物测定,如抗菌活性、抗肿瘤活性、抗炎活性等,筛选出具有生物活性的化合物。
5.进一步筛选与优化:在获得具有初步生物活性的代谢产物后,可以进一步对其进行筛选与优化。
可以通过改变培养条件(如培养基、温度、pH值等)、发酵工艺等方式提高活性代谢产物的产量和纯度。
6.结构鉴定:对优选的生物活性代谢产物进行结构鉴定,通常使用核磁共振谱、质谱、红外光谱等波谱技术进行分析。
结构鉴定有助于揭示生物活性物质的药理作用机制,为后续研究提供基础。
7.生产量扩大与优化:当获得了具有潜在药用价值的放线菌菌株和代谢产物后,可以进行大规模的发酵生产以提高产量。
在此过程中,需要不断优化发酵工艺、培养基成分和培养条件,以提高产量和纯度。
综上所述,放线菌筛选的一般方法包括放线菌样本的收集、放线菌的分离、放线菌培养、代谢产物的筛选、进一步筛选与优化、结构鉴定和生产量扩大与优化。
这些方法的应用能够帮助科学家发现新的放线菌菌株和生物活性化合物,并为新药研发提供重要的基础信息。
培养基高氏Ⅰ号培养基:可溶性淀粉20.00g、NaCl 0.50 g、KNO3 1.00 g、K2HPO4·3H2O 0.50 g、MgSO4·7H2O 0.50 g、FeSO4·7H2O 0.01g、琼脂粉18.00g,加去离子水定容至1 000 mL,调至pH 7.0,121 ℃高压灭菌20 min.
土壤取样方法:在水稻根部周围,先去除表面2厘米的土后,采用5点取样法取土,混匀。
稀释涂布分离法:取新鲜的土壤5g,与45ml的无菌水混合,摇床要20min,把摇好的10^-1的液体静置待颗粒沉淀后,取1ml加入到有9ml无菌水的试管中,混匀,就到10^-2的稀释液,再从10^-2的稀释液中吸取1ml加入到9ml无菌水的试管中,混匀,就到10^-3的稀释液,类推就可以得到10^-4、10^-5的稀释液。
把灭过菌的100ml的高氏Ⅰ号培养基带温度到60-70左右时加入过0.45um滤膜的0.05g/ml的高锰酸钾溶液100ul、0.1g的氯霉素、0.2ml的庆大霉素,摇匀,倒平板。
用10^-3、10^-4、10^-5三个浓度涂平板。
放线菌发酵:用不加琼脂高氏Ⅰ号培养基接入菌株,在28 ℃、280r/min 摇床培养7d。
过滤,取滤液。
滤液保存在4℃。
莴苣生测:菌液过0.45um的滤膜5ml,加入到有5棵冒芽的莴苣的组培瓶中(每个重复3次)。
稗草生测:与莴苣生测雷同。
分离放线菌实验报告分离放线菌实验报告一、引言放线菌是一类广泛存在于土壤和水环境中的细菌,具有丰富的代谢能力和生物活性物质产生能力。
为了研究放线菌的多样性和潜在应用价值,本实验旨在从土壤样品中分离放线菌,并对其进行鉴定和初步评估。
二、材料与方法1. 样品采集:从不同地点的土壤中采集样品,保持样品的新鲜度和原生态。
2. 样品处理:将采集到的土壤样品进行稀释,以获得适合分离放线菌的浓度。
3. 分离放线菌:将样品分别涂布在含有富集放线菌所需营养物质的培养基上,然后进行孵育。
4. 鉴定放线菌:观察培养基上出现的菌落形态和颜色等特征,选取具有代表性的菌落进行进一步鉴定。
5. 鉴定方法:通过显微镜观察菌落形态和细胞形态,对菌株进行初步分类。
使用生化试剂和生理特性测试进一步鉴定放线菌的代谢能力和特性。
三、结果与讨论经过培养和鉴定,我们成功地从土壤样品中分离出多个放线菌菌株。
根据菌落形态和细胞形态的观察,我们初步将这些菌株归类为链霉菌属、链霉菌属和新链霉菌属等。
进一步的鉴定工作表明,这些放线菌菌株具有多样的代谢能力和特性。
其中一些菌株显示出产生抗生素的能力,这对于开发新的抗菌药物具有潜在意义。
另外,一些菌株还表现出对重金属离子的耐受性,这可能与其在环境修复中的应用有关。
通过对放线菌菌株的形态特征和生理特性的研究,我们初步了解了这些菌株的生物学特性。
然而,进一步的分子生物学和基因组学研究将有助于更全面地揭示这些放线菌的潜力和应用价值。
四、结论本实验成功地从土壤样品中分离出多个放线菌菌株,并对其进行了初步鉴定和评估。
这些放线菌菌株具有多样的代谢能力和特性,包括抗生素产生和重金属耐受性等。
这些发现为放线菌的应用研究提供了基础,并为开发新的生物技术和药物提供了潜在的资源。
然而,本实验只是一个初步的探索,还需要进一步的研究来深入了解放线菌的多样性和潜力。
相信通过不断的努力和研究,我们能够更好地利用这些放线菌资源,为人类的健康和环境保护做出更大的贡献。
土壤中放线菌的分离
分离土壤中的放线菌的步骤如下:
1. 准备培养基:选择适合放线菌生长的培养基,常用的包括土壤提取物富集培养基、葡萄糖琼脂糖培养基、镜菌素琼脂糖培养基等。
2. 取样:在选择好的采样地点,使用消毒的工具(如消毒棉签或无菌铲子)采集土壤样品。
注意避免土壤样品的污染。
3. 预处理:将采集到的土壤样品放入无菌研钵中,加入合适的无菌生理盐水或者缓冲液,悬浮土壤样品,使放线菌被更好地释放出来。
可以对土壤样品进行稀释处理,以降低微生物密度。
4. 稀释平板法:将预处理好的土壤样品用无菌移液管分别
在培养基平板上均匀涂布。
然后放入恒温培养箱进行培养。
孵育时间一般为3-4周。
在培养箱内,放线菌会产生菌落
形成。
5. 单菌分离:在培养箱内观察到单个的放线菌菌落后,使
用消毒的工具将其分离到新的培养基上,形成纯种菌落。
这一步可以采用传统的传代分离法或微量分离法。
6. 纯种菌株保存:将得到的纯种菌株存储在适当的冻存管中,通过冻存进行长期保存。
需要注意的是,在进行上述步骤时,需要严格遵守无菌操
作的原则,避免样品或培养基的污染,以保证得到纯种的
放线菌菌株。
土壤、水质检测——放线菌、霉菌、大肠杆菌的分离方法微生物因为体积小、质量轻、适应性强、繁殖能力强等特点,广泛分布于自然界中。
它们存在于食品、化妆品、饲料、环境等人们能触及的各个角落中。
某些微生物对产品的污染,不仅影响到产品本身的质量,更严重的是它危及消费者的健康和安全。
科标检测研究院凭借多年的微生物检测经验,可提供快速、高效、权威的第三方微生物检测服务,赢得社会业内广泛认可。
主要针对食品、医药、化妆品、农产品、一次性产品以及工业产品等进行微生物检测以及产品微生物污染分析。
以下介绍几种菌的分离方法:一、从土壤中分离放线菌1.制作高氏一号培养基,趁热注入培养皿中,凝成平板,待用。
2.称取土壤10克,放入装有100毫升无菌水的锥形瓶中,并加入10%酚10滴,以抑制细菌生长。
振荡10分钟,制成10-1菌悬液。
按照连续稀释分离法,进一步制成10-3菌悬液。
3.用移液管吸取0.1毫升10-3菌悬液,注入平板培养基上,用无菌玻璃刮刀将菌悬液均匀涂抹在整个培养基上。
然后将培养皿倒置于25-30℃温箱中,培养7-10天,培养基上会出现微生物菌落。
如果菌落的硬度较大,干燥致密,且与基质紧密结合,不易被针挑起,这就是放线菌菌落。
4.挑取放线菌菌落,接种于斜面培养基上。
二、从土壤中分离霉菌1.制作豆芽汗葡萄糖培养基,并添加80%乳酸数滴,以抑制细菌生长。
将培养皿中,凝成平板,待用。
2.称取10克土壤,按上述分离放线菌的方法制成10-4或10-5的菌悬液。
3.取0.1毫升菌悬液注入培养皿内培养基上,用玻璃刮刀涂抹均匀。
然后将培养皿倒置于2 5-30℃温箱内培养3-4天。
培养基上会出现微生物菌落。
霉菌菌落常长成绒状、棉絮状或蜘蛛网状,可根据这一特征寻找霉菌菌落。
4.挑取培养皿内的霉菌菌落接种于斜面培养基上三、从饮水中分离大肠杆菌1.制作伊红美蓝培养基,趁热注入培养皿中,凝成平板,待用。
2.用灭过菌的锥形瓶盛取河水或沟水,按1:10稀释。
放线菌的分离与筛选方法放线菌介于细菌和丝状真菌的一类丝状原核生物,多为腐生,少数寄生。
腐生型在自然界物质循环中起着重要作用。
放线菌突出特性产生抗菌素,常以孢子或菌丝状态存在,以土壤最多,常存在肥土农田土中性或偏碱性土壤中。
1.拮抗放线菌的筛选方法:1.1平板划线法:待测菌株与检测病原菌通用培养基制成平板,在平板中央划线接种待测菌株,28-30℃ 3-5d,将病原菌垂直方向划线于待测菌生长线的两侧,不能与待测菌相连,在37℃ 24h取出观察。
如果待测菌株对病原菌有抑制活性,病原菌靠近待测菌的一端生长会受到待测菌抑制产生抑菌带。
可根据抑菌带的长短来判断待测菌活性强弱。
选择抑制活性强的复筛。
1.2抑菌圈法或十字交叉法:常用的初筛方法将待测菌接种于平板,长出成熟菌落后,用打孔器将供试病原菌苔打成直径5-6mm小菌块,并将其移入到病原菌平板培养基中,将待测菌与病原菌呈十字交叉排列,即病原菌在中央,待测菌置于病原菌的四周,培养3-4d。
若有抑菌活性在待测菌周围形成一个没有生长病原菌抑菌圈。
若菌块厚度大小一致的,抑菌圈的大小可直观反应待测菌抑菌活性的强弱。
1.3纸片法或生长速率法:主要测定发酵液的抑菌活性,即将相同灭菌后的圆形滤纸片放于待测发酵液中,取出并黏贴在接种有病原菌的平板培养基,培养后观察有无抑菌圈或抑菌圈的大小。
2.放线菌分离与筛选.2.1培养基;2.1.1改良高1号:可溶性淀粉20g/L KH2PO40.5g/L NaC10.5g/L MgSO40.2-0.5g/L KNO3 1g/L FeSO40.01g/L 重铬酸钾(3%)3.3mL/L PH7.2-7.4(分离保存用)每100ml培养基加入1ml0.1℅的FeSO4溶液。
2.1.2淀粉培养基和秸秆腐解物培养基2.1.3拮抗试验培养基:高1号牛蛋 PDA改良培养基加3g牛肉膏2.2抑菌剂的选择:有效降低细菌真菌的数量,细菌扩散真菌蔓延速度迅速。
实验五:土壤中放线菌的分离实验学时:5学时实验类型:验证性实验、综合性实验实验要求:必修一、实验目的从土壤中分离、纯化放线菌;初步掌握药用微生物的分离纯化方法和操作技术。
了解不同生境条件中土壤放线菌的种类与数量。
二、实验内容筛选放线菌永远是新抗生素研究的课题之一。
迄今为止,已发现的抗生素约有80%来自于放线菌。
土壤中放线菌最丰富,品种齐全。
通常情况下,放线菌在比较干燥、偏碱性、含有机质丰富的土壤中数量居多。
随着地理分布、植被及土壤性质的不同,放线菌的种类、数量和拮抗性也各不相同。
从堆肥或过热的材料中如干草或蔗渣中可分离到大量的嗜热放线菌,从淡水和海洋环境中可分离到嗜碱性的和嗜酸性的菌种。
土壤中含有的放线菌主要是链霉菌,人们通常将除链霉菌以外的其它放线菌统称为稀有放线菌,如小单孢菌、游动放线菌、诺卡氏菌等,它们是生物活性物质重要的产生菌。
但往往由于样品中稀有放线菌的数量太少,常规的分离方法很难得到。
对样品进行风干、干热处理、培养基添加重铬酸钾等方法可以减少细菌和真菌的数量,以提高放线菌的获得率。
用干热和苯酚处理可减少链霉菌数量和比例的方法,可以分离得到更多种类的放线菌。
土壤中分离放线菌的方法很多,其中包括稀释法、弹土法、混土法和喷土法等,本实验主要采用稀释法来获得放线菌。
注:从土壤中分出的放线菌要进一步鉴别是否为抗生菌。
首先应根据筛选目的确定试验模型,然后利用培养基平板进行拮抗性测定。
常用的方法有琼脂块法和滤纸片法。
其主要依据是扩散原理,即观察在抗生菌周围是否会出现明显的抑菌圈。
抑菌圈的大小和透明度则表明了该菌株抗菌活性的强弱。
三、实验原理、方法和手段原理一:稀释涂布平板法;如图1。
原理二:对样品进行风干、干热处理以减少细菌和真菌的数量;原理三:向培养基添加适量的重铬酸钾能抑制其他细菌、真菌的生长,但不影响放线菌的生长。
四、实验组织运行要求根据本实验的特点、要求和具体条件,采用“采用集中授课形式,分组试验进行”的组织运行模式。
放线菌的实验报告放线菌的实验报告一、引言放线菌是一类广泛存在于自然界中的微生物,以其独特的形态和生物学特性而备受研究者的关注。
本实验旨在通过对放线菌的分离培养、形态观察和抗生素产生能力的检测,进一步了解放线菌的特点和应用潜力。
二、材料与方法1. 放线菌分离培养:将土壤样品取自自然环境中,加入到含有适宜培养基的培养皿中,进行稀释均匀。
然后将培养皿密封,置于恒温培养箱中,在适宜的温度下培养一段时间,直至观察到单个菌落的形成。
2. 放线菌形态观察:取一颗单个菌落,用显微镜观察其形态特征,包括菌丝的形状、颜色、分枝情况等。
3. 抗生素产生能力检测:将分离得到的放线菌菌株接种到含有抗生素敏感菌株的琼脂平板上,观察菌落周围是否出现抑制圈。
三、结果与讨论1. 放线菌的分离培养:经过一段时间的培养,观察到培养皿中出现了单个菌落。
将这些菌落通过传代培养,得到纯种的放线菌菌株。
2. 放线菌的形态观察:在显微镜下观察到放线菌菌丝呈分枝状,颜色多样,有的呈白色、黄色或橙色。
菌丝通常呈直线状,但也有少数呈弯曲或环状。
3. 抗生素产生能力检测:将分离得到的放线菌菌株接种到含有抗生素敏感菌株的琼脂平板上,观察到菌落周围出现了抑制圈。
这表明放线菌具有抗生素产生的能力,可以对其他细菌产生抑制作用。
放线菌作为一类重要的微生物资源,具有广泛的应用前景。
其产生的抗生素被广泛应用于医药领域,用于治疗各种感染性疾病。
此外,放线菌还具有其他生物活性物质的合成能力,如抗肿瘤物质、抗氧化物质等。
因此,对放线菌的深入研究具有重要意义。
在本次实验中,我们成功地从自然环境中分离出了放线菌,并观察到了其形态特征和抗生素产生能力。
然而,实验中仍存在一些不足之处。
首先,由于实验时间有限,我们只对放线菌的形态进行了简单的观察,没有进行更深入的分类和鉴定。
其次,我们只检测了放线菌的抗生素产生能力,而未对其产生的抗生素进行具体的鉴定和分析。
为了更好地发掘和利用放线菌的潜力,今后的研究可以从以下几个方面展开:1. 对分离得到的放线菌菌株进行进一步的形态学和生理学研究,以了解其多样性和适应能力;2. 对放线菌产生的抗生素进行鉴定和分析,以寻找新的抗生素种类和开发新的药物;3. 利用基因工程技术改造放线菌,提高其抗生素产量和质量。