相图热力学及其计算
- 格式:ppt
- 大小:2.08 MB
- 文档页数:19
分类号:安徽师范大学硕士学位论文题目:稀土卤化物相图的热力学优化与计算TITLE:Thermodynamic Optimization and Calculation of Phase Diagrams Related to the Rare Earth Halide学科、专业:物理化学研究方向:材料物理化学作者姓名:张静导师及职称:孙益民教授论文提交日期: 2004年5月授予学位日期:安徽师范大学学位评定委员会办公室稀土卤化物相图的热力学优化与计算Thermodynamic Optimization and Calculation of Phase Diagrams Related to the Rare Earth Halide张静安徽师范大学硕士学位论文2004年5月本论文经答辩委员会审查,确认符合安徽师范大学硕士学位论文质量要求。
答辩委员会签名:主席:(工作单位、职称)委员:导师:稀土卤化物相图的热力学优化与计算摘要本论文利用CALPHAD(Computer Coupling of Thermochemistry and Phase Diagram)技术对二元体系的稀土卤化物相图进行了系统的优化与计算。
研究工作针对所优化计算体系强相互作用的特点,以当代亦即最具代表性的短程有序—扩展似化学模型为理论指导,在此理论的基础上通过认真分析将其合理应用于稀土卤化物熔盐体系相图优化计算中。
在一些数据库基础上分步编制计算程序,优化了三价稀土氯化物与碱金属氯化物构成的二元物质体系,并首次应用短程有序—扩展似化学模型对三价稀土氯化物与碱土金属氯化物二元体系的相图进行热力学优化,通过计算得到了TbCl3-ACl (A=Li, Na, K, Rb, Cs)、CeCl3-AECl2(AE=Mg, Ca, Sr, Ba)9个体系的热力学参数和优化结果自洽的计算相图。
根据体系各种热力学参(函)数自洽的原理,在整个优化过程中:一、选择和建立合理的热力学模型;二、将实验相图数据和其他热力学数据结合起来,利用稀土卤化物体系实验相图和有限的散落的文献热力学数据进行热力学优化和评估,获得合理、可靠、自洽的所研究体系的热力学描述。
相图计算方法简介运用热力学计算相图:以相作为“单元”,计算整个体系的所有相的自由能,根据自由能最小原理确定稳定存在的相:pi=1minimum i i G n G ϕ==∑。
具体步骤:一、收集所要评估体系的实验相图数据和热力学实验数据 二、针对体系中各相的晶体结构,选择合理的热力学模型1) Cu-Ni 体系:有两个固溶体相,LIQUID 和 FCC_A1选择亚规则溶体模型.2) Pb-Sn 体系:有三个固溶体相,LIQUID 、BCT_A5和FCC_A1选择亚规则溶体模型.三、理解亚正规溶体模型中,相自由能的表达式,以及表达式中各项的具体含义1) 固溶体相的自由能的表达式为:()00ln ln i i j j i j i j i ij j m RT x x x x G G x x G x x L φφφφ+=+++ , mag Gφ+ i ,j 按元素字母顺序排列,如:在Cu-Ni 体系中i =Cu ,j =Ni 。
2) 其中0i j i j x x G G φφ+为纯组元项,0i G φ是φ相中的i 成分的自由能,25℃时稳定存在的纯物质的焓作为参考态来表述(SGTE 值);()ln ln i i j j RT x x x x +为理想混合熵项;i j ij x x L φ为过剩自由能项; , mag Gφ由于合金的磁性而附加自由能项(Co 、Ni 、Fe 合金)。
3) a).在过剩自由能项i j ij x x L φ中,ij L φ代表二元相互作用参数,其表达式为()0n nni j ij ij m L X X L φφ==-∑。
其中ln nij A BT CT T L φ=++,而A 、B 、C 即是相图计算所需要优化的参数。
b)., mag G φ是磁转矩,()(), =RTln 1mag f G φβτ∆+,CTT τ=, 0,0= ()nm m i i i i C j i j j im X T X X T X T X φφφ=+∑∑-,()0,0= n mm i i j iji i jim X X X X X φφφβββ=+∑∑-其中,mi j T φ,,mi jφβ是组元i 和j 的磁性相互作用参数,待优化参数。
合金材料热力学计算模拟方法热力学计算模拟方法在合金材料研究中起着重要的作用。
通过模拟和计算,可以预测材料的相变行为、相稳定性以及材料的热力学性质。
本文将介绍几种常用的合金材料热力学计算模拟方法,包括相图计算、基于第一原理的方法以及相场模拟方法。
相图计算是一种常用的热力学计算模拟方法,它基于热力学的平衡条件,通过计算材料在不同温度和组分下的稳定相来构建相图。
这一方法可以为合金材料的相变行为和相稳定性提供重要信息。
常见的相图计算方法包括拟合实验数据和基于基本热力学原理的计算。
拟合实验数据方法通过实验数据的曲线拟合来计算相图。
基于基本热力学原理的计算方法则通过计算热力学势函数和构建相平衡条件来计算相图。
相图计算方法可以帮助研究者预测合金材料的相变温度、相变规律以及相稳定性。
另一种常用的合金材料热力学计算模拟方法是基于第一原理的方法。
这一方法是通过计算材料的原子尺度行为来预测材料的宏观性质。
基于第一原理的方法可以通过解析或数值方法来计算材料的势能曲线,从而预测材料的热力学性质。
常见的基于第一原理的方法包括密度泛函理论(DFT)和蒙特卡洛模拟方法。
密度泛函理论可以通过求解薛定谔方程来计算材料的电子结构和能量。
蒙特卡洛模拟方法则通过模拟原子的运动和相互作用来预测材料的热力学性质。
基于第一原理的方法可以帮助研究者深入理解合金材料的微观行为和性质。
相场模拟是一种基于宏观尺度的热力学计算模拟方法。
这一方法可以预测材料的相界面演化和相变行为。
相场模拟方法将材料划分为多个小区域,并通过守恒方程和扩散方程描述各小区域内的物质输运和相变行为。
通过迭代计算和数值模拟,可以模拟材料的相变动力学行为。
相场模拟方法可以帮助研究者预测合金材料的微观结构演变和相变速率。
综上所述,合金材料热力学计算模拟方法在材料研究中具有重要的作用。
相图计算、基于第一原理的方法和相场模拟方法是常用的热力学计算模拟方法。
这些方法可以预测材料的相变行为、相稳定性以及热力学性质。
哈尔滨工业大学材料热力学论文——相图计算及其在材料设计中的应用指导老师:郑明毅学生:孙永根学号:11S109048相图计算及其在材料设计中的应用摘要本文首先介绍了材料设计所遇到的困难以及CALPHAD技术的出现及应用。
CALPHAD 技术综合利用计算热力学、动力学模拟及实验数据规范评估来优化材料的成分、相(含亚稳相)组成、组织结构及加工处理过程,进而改善材料性能,是二十世纪八十年代出现了计算材料学这一新学科的重要组成部分。
本文分别简要介绍了计算相图(CALPHAD技术)在ZA52-xY镁合金的合金设计及建立Mg-Ca-Ce三元体系热力学系统中的应用,凸显了CALPHAD技术在计算多元体系相图中的优势。
1 材料设计与热力学相图计算1.1 材料设计的途径及CALPHAD技术在以往的材料开发上,通常采用“试错法”来实现,即材料开发人员通过大量的实验和经验来选择材料的成分、稳定工艺参数。
这样即消耗了大量的人力和物力,又不利于系统地探讨材料改性的机理。
材料科学研究面临的突出问题可以归结到两个方面:(1)由于研究对象的复杂性,现有理论模型无法突破局限性,对一些错综复杂问题的处理难以令人满意;(2)虽然新的实验技术、仪器和设备不断涌现,在一定范围内为实验研究提供了新的途径,但大都极为昂贵。
材料制备中一个不容忽视的问题是:我们对具有一定组织和性能的多组元或多相材料的成分缺乏可预见性。
相图常常作为确定材料制各工艺路线(包括成分配比、合成和处理)的唯一依据。
但是,对于多元、多相新兴材料,绝大多数情况下只能找到其构成元素间的二元相图,而三元和三元以上的多元相图非常有限。
因此,对多组元合金制备时成分的确定相当缺乏理论指导,而试验尝试的方法盲目性较大,又非常耗时耗力。
由上述可见,传统的材料研究方法存在不少局限性。
对于新材料研制,单纯依靠理论研究和实验尝试都不能保证科学性和高效性。
随着近一个世纪合金理论的积累和几十年来计算机技术的迅速发展,20世纪60年代相计算(PHACOMP)技术在Ni基高温合金成分设计上的成功应用揭开了合金设计的序幕。