第7章 平均数差异的显著性检验
- 格式:ppt
- 大小:1.55 MB
- 文档页数:61
第一章绪论1,教育统计学是运用数理统计学的原理来研究教育问题的一门应用科学。
2,教育统计学分为描述统计、推断统计和实验设计三类。
(1)描述统计:计算集中量(算术平均数、中位数、众数、加权算术平均数、几何平均数、调和平均数)来反映集中趋势;计算差异量(全距、四分位距、百分位距、平均差、标准差、差异系数)反映离散程度;计算偏态量及峰态量反映分布形态;计算相关量(积差相关系数、等级、点二列、二列、四分、C相关系数、肯德尔和谐系数、多系列相关系数)反映一致性程度。
(2)推断统计包括总体参数估计和假设检验两部分。
3,随机现象三个特性:一,一次试验有多种可能的结果,其所有结果是已知的;二,试验之前不能预料那一种结果会出现;三,在相同条件下可以重复试验。
随机事件:随机现象的每一种结果。
随机变量:把能表示随机现象各种结果的变量称之4,总体:是我们研究的具有某种共同特性的个体的总和。
样本数目大于30称为大样本,小于等于30称为小样本。
第二章数据的初步整理1,教统资料来源有经常性资料和专题性资料。
专题性资料包括(1)教育调查。
按调查方法分为现情调查、回顾调查和追踪调查;按调查范围分全面调查和非全面调查(抽样调查和典型调查)。
(2)教育实验。
分为单组实验(指对同一实验对象先后实施两种实验处理)、等组实验(指在甲乙两组条件基本相同的情况下,对之实行不同的实验处理)和轮组实验(指在实验组和对照组分别进行两种实验处理,并且每种处理各重复一次,也即每个或多个单组实验的联合)2,数据的分类。
按来源分为点计数据和度量数据;按随机变量取值情况分为间断型随机变量(取值个数有限、独立的、两个单位之间不能再划分细小单位、一般用整数表示,如优劣程度、品德爱好打分)和连续性随机变量(个数无限、单位之间可以再划分、可以用小数表示如身高体重、完成作业的时间等)。
3,频数分布表制作步骤:求全距;决定组数和组距;决定组限;登记频数。
4,用累计频数表示的频数分布表称为累计频数分布表。
(抽样检验)第七章第⼀次课抽样原理与⽅法第⼀节抽样⽅案的制定在科学研究中,除了进⾏控制试验外,有时也要进⾏调查研究。
调查研究是对已有的事实通过各种⽅式进⾏了解,然后⽤统计的⽅法对所得数据进⾏分析,从⽽找出其中的规律性。
例如,了解畜禽品种及⽔产资源状况;探索和分析对某种疾病有效的防治规律、措施以及新的检验⼿段和⽅法等。
由于现场调查⽴⾜于⽣产实际,所以它是研究和解决实际问题的⼀种重要研究⽅法。
同时,控制试验的研究课题,往往是在调查研究的基础上确定的;试验研究的成果,⼜必须在其推⼴应⽤后经调查得以验证。
为了使调查研究⼯作有⽬的、有计划、有步骤地顺利开展,必须事先拟定⼀个详细的调查计划。
调查计划应包括以下⼏个内容:(⼀) 调查研究的⽬的任何⼀项调查研究都要有明确的⽬的,即通过调查了解什么问题,解决什么问题。
例如,家畜健康状况的调查的⽬的是评定家畜健康⽔平;畜禽品种资源调查的⽬的是了解畜禽品种的数量、分布与品种特征特性等情况。
同时,调查研究的⽬的还应该突出重点,⼀次调查应针对主要问题收集必要的数据,深⼊分析,为主要问题的解决提出相应的措施和办法。
(⼆) 调查的对象与范围根据调查的⽬的,确定调查的对象、地区和范围,划清调查总体的同质范围、时间范围和地区范围。
例如,四川省家禽品种资源调查,调查地区为四川省,调查总体和对象为全省各市、县的家禽,调查时间从2000年1⽉到2000年12⽉。
(三) 调查的项⽬调查项⽬的确定要紧紧围绕调查⽬的。
调查项⽬确定的正确与否直接关系到调查的质量。
因此,项⽬应尽量齐全,重要的项⽬不能漏掉;项⽬内容要具体、明确,不能模棱两可。
应按不同的指标顺序以表格形式列⽰出来,以达到顺利完成搜集资料的⽬的。
例如,家禽品种资源调查项⽬有:种类(鸡、鸭、鹅等)、品种(柴鸡、来航、⽩洛克等),数量、体重、产蛋性能等项⽬。
调查项⽬有⼀般项⽬和重点项⽬之分。
⼀般项⽬主要是指调查对象的⼀般情况,⽤于区分和查找,如畜主姓名、住址及编号等。
第三节两个样本平均数的差异显著性检验在实际工作中还经常会遇到推断两个样本平均数差异是否显著的问题,以了解两样本所属总体的平均数是否相同。
对于两样本平均数差异显著性检验,因试验设计不同,一般可分为两种情况:一是非配对设计或成组设计两样本平均数的差异显著性检;二是配对设计两样本平均数的差异显著性检。
一、非配对设计两样本平均数的差异显著性检验非配对设计或成组设计是指当进行只有两个处理的试验时,将试验单位完全随机地分成两个组,然后对两组随机施加一个处理。
在这种设计中两组的试验单位相互独立,所得的二个样本相互独立,其含量不一定相等。
非配对设计资料的一般形式见表5-2。
表5-2非配对设计资料的一般形式处理观测值xij 样本含量ni平均数总体平均数1x11x12…n1=Σx1j/n12x21x22…n2=Σx2j/n2非配对设计两样本平均数差异显著性检验的基本步骤如下:(一)提出无效假设与备择假设:=,:≠(二)计算值计算公式为:(5-3)其中:(5-4)==当时,==(5-5)为均数差异标准误,、,、,、分别为两样本含量、平均数、均方。
(三)根据df=(n1-1)+(n2-1),查临界值:、,将计算所得t值的绝对值与其比较,作出统计推断【例】某种猪场分别测定长白后备种猪和蓝塘后备种猪90kg时的背膘厚度,测定结果如表5-3所示。
设两品种后备种猪90kg时的背膘厚度值服从正态分布,且方差相等,问该两品种后备种猪90kg时的背膘厚度有无显著差异表5-3长白与蓝塘后备种猪背膘厚度品种头数背膘厚度(cm )长白12、、、、、、、、、、、蓝塘11、、、、、、、、、、1、提出无效假设与备择假设:=,:≠2、计算值此例=12、=11,经计算得=、=、=,=、=、=、分别为两样本离均差平方和。
====**=(12-1)+(11-1)=211.查临界t值,作出统计推断当df=21时,查临界值得:=,|t|>,P<,否定:=,接受:≠,表明长白后备种猪与蓝塘后备种猪90kg背膘厚度差异极显著,这里表现为长白后备种猪的背膘厚度极显著地低于蓝塘后备种猪的背膘厚度。
第7章显著性检验的基本问题教学目的与要求:通过本章讲授,使学生了解下列概念:观察到的显著水平(p_值)、检验时规定的显著水平标准、显著水平、临界值、检验规则、原假设和备择假设,知道什么是双尾检验,什么是左(右)单尾检验以及各自的适用场合,知道什么是显著性检验中的两类错误以及犯这类错误的概率的图示,掌握总体均值是否为某定值以及两点分布总体中一次试验成功率为某定值的检验问题,知道显著性检验中应当注意的问题。
重点内容与难点:1.显著性检验的基本问题2.总体均值为某定值的显著性检验3.随机试验中某种事件出现的概率为某定值的显著性检验§7.1 显著性检验的基本问题1.显著性检验是除参数估计之外的另一类重要的统计推断问题。
2.显著性检验,又称假设检验:就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
3.显著性检验是针对我们对总体所做的假设做检验。
一、显著性检验的基本思想显著性检验的基本思想可以用小概率原理来解释。
1.小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件A事实上发生了。
那只能认为事件A不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。
2.观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积为。
这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。
3.检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。
4.在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。
第三节-两个样本平均数差异显著性检验第三节-两个样本平均数差异显著性检验两个样本平均数差异显著性检验是用于比较两个独立样本的平均数是否存在显著差异的统计方法。
该方法可以帮助我们确定两个样本是否来自于同一个总体,或者两个样本之间是否存在显著差异。
显著性检验的步骤如下:1. 确定原假设和备择假设:- 原假设(H0):两个样本的平均数相等(μ1 = μ2)- 备择假设(H1):两个样本的平均数不相等(μ1 ≠ μ2)2. 选择适当的显著性水平(α):- 显著性水平是指我们在做统计推断时所能接受的错误发生的概率。
通常选择0.05作为显著性水平。
3. 计算样本均值和标准差:- 分别计算两个样本的均值(x1 和x2)和标准差(s1 和s2)。
4. 计算 t 统计量:- 使用以下公式计算 t 统计量:- t = (x1 - x2) / √((s1^2 / n1) + (s2^2 / n2))- 其中,x1 和x2 分别为两个样本的均值,s1 和 s2 分别为两个样本的标准差,n1 和 n2 分别为两个样本的样本大小。
5. 确定临界值:- 根据样本大小和显著性水平查找 t 分布表,确定临界值。
6. 判断检验结果:- 如果计算得到的 t 统计量大于临界值,则拒绝原假设,认为两个样本的平均数差异显著;- 如果计算得到的 t 统计量小于临界值,则接受原假设,认为两个样本的平均数差异不显著。
在进行两个样本平均数差异显著性检验时,需要确认数据满足以下假设:- 数据是从一个总体或两个独立总体中随机选取的;- 数据符合正态分布或样本大小足够大(通常要求每个样本的样本大小大于30);- 两个样本是独立的,即一个观测值对应一个样本。
如果数据不满足这些假设,则可能需要采用其他的非参数方法进行统计推断。
通过两个样本平均数差异显著性检验,可以帮助我们确定两个样本之间是否存在显著差异,从而进行有效的统计推断和决策。
显著性差异分析在统计学中,显著性差异分析是一种比较两个或多个样本之间差异是否具有统计学意义的方法。
通过显著性差异分析,我们可以确定样本之间是否存在显著差异,进而推断总体的差异是否具有实质性意义。
本文将介绍显著性差异分析的基本概念、常用方法以及应用场景。
一、基本概念显著性差异分析的核心概念是“显著性”。
在统计学中,显著性表示一个结果或差异是否偶然发生的概率。
通常使用p值来衡量差异的显著性程度,p值越小,说明差异越显著。
一般将p值小于0.05定义为显著差异,即差异不是由随机因素引起的。
二、常用方法显著性差异分析的方法有很多,常用的包括以下几种:1. t检验:适用于比较两组样本均值的差异是否显著。
例如,我们可以使用t检验来比较男性和女性的身高是否有显著差异。
2. 方差分析(ANOVA):适用于比较多个样本之间的平均值是否存在显著差异。
例如,我们可以使用ANOVA来比较不同教育程度人员的收入是否有显著差异。
3. 卡方检验:适用于比较两个或多个样本之间的分布是否有显著差异。
例如,我们可以使用卡方检验来比较各个年龄段人群中有无购买某种产品的差异。
4. Wilcoxon秩和检验:适用于比较两个相关样本或两组配对样本的差异是否显著。
例如,我们可以使用Wilcoxon秩和检验来比较同一组学生在考试前后成绩的变化是否显著。
三、应用场景显著性差异分析在各个领域都有广泛的应用,以下列举几个典型的应用场景:1. 医学研究:显著性差异分析被广泛用于比较不同治疗方法的疗效。
通过分析不同治疗组和对照组的效果差异,可以为临床决策提供科学依据。
2. 教育评估:显著性差异分析可以用于比较不同学校、不同教育方法的教育效果。
通过分析学生的考试成绩差异,可以评估不同因素对学生成绩的影响。
3. 社会科学调查:显著性差异分析可以用于比较不同人群之间的差异。
例如,通过分析不同年龄段、不同性别之间的意见差异,可以了解社会问题在不同人群中的认知差异。