平均数差异显著性检验
- 格式:ppt
- 大小:291.00 KB
- 文档页数:18
第二节样本平均数与总体平均数差异显著性检验在实际工作中我们往往需要检验一个样本平均数与已知的总体平均数是否有显著差异,即检验该样本是否来自某一总体。
已知的总体平均数一般为一些公认的理论数值、经验数值或期望数值。
如畜禽正常生理指标、怀孕期、家禽出雏日龄以及生产性能指标等,都可以用样本平均数与之比较,检验差异显著性。
检验的基本步骤是:(一)提出无效假设与备择假设:=,:≠,其中为样本所在总体平均数,为已知总体平均数;(二)计算值计算公式为:(5-2)式中,为样本含量,为样本标准误。
(三)查临界t值,作出统计推断由查附表3得临界值,。
将计算所得值的绝对值与其比较,若|t|<,则P>0.05,不能否定:=,表明样本平均数与总体平均数差异不显著,可以认为样本是取自该总体;若≤|t|<,则0.01<P≤0.05,否定:=,接受:≠,表明样本平均数与总体平均数差异显著,有95%的把握认为样本不是取自该总体;若|t|≥,则P≤0.01,表明样本平均数与总体平均数差异极显著,有99%的把握认为样本不是取自该总体。
若在0.05水平上进行单侧检验,只要将计算所得t值的绝对值|t|与由附表3查得 =0.10的临界t值比较,即可作出统计推断。
【例5.1】母猪的怀孕期为114天,今抽测10头母猪的怀孕期分别为116、115、113、112、114、117、115、116、114、113(天),试检验所得样本的平均数与总体平均数114天有无显著差异?根据题意,本例应进行双侧t检验。
1.提出无效假设与备择假设:=114,:≠1142、计算值经计算得:=114.5,S=1.581所以===1.000=10-1=93、查临界值,作出统计推断由=9,查值表(附表3)得=2.262,因为|t|<,P>0.05,故不能否定:=114,表明样本平均数与总体平均数差异不显著,可以认为该样本取自母猪怀孕期为114天的总体。
第三节-两个样本平均数差异显著性检验第三节-两个样本平均数差异显著性检验两个样本平均数差异显著性检验是用于比较两个独立样本的平均数是否存在显著差异的统计方法。
该方法可以帮助我们确定两个样本是否来自于同一个总体,或者两个样本之间是否存在显著差异。
显著性检验的步骤如下:1. 确定原假设和备择假设:- 原假设(H0):两个样本的平均数相等(μ1 = μ2)- 备择假设(H1):两个样本的平均数不相等(μ1 ≠ μ2)2. 选择适当的显著性水平(α):- 显著性水平是指我们在做统计推断时所能接受的错误发生的概率。
通常选择0.05作为显著性水平。
3. 计算样本均值和标准差:- 分别计算两个样本的均值(x1 和x2)和标准差(s1 和s2)。
4. 计算 t 统计量:- 使用以下公式计算 t 统计量:- t = (x1 - x2) / √((s1^2 / n1) + (s2^2 / n2))- 其中,x1 和x2 分别为两个样本的均值,s1 和 s2 分别为两个样本的标准差,n1 和 n2 分别为两个样本的样本大小。
5. 确定临界值:- 根据样本大小和显著性水平查找 t 分布表,确定临界值。
6. 判断检验结果:- 如果计算得到的 t 统计量大于临界值,则拒绝原假设,认为两个样本的平均数差异显著;- 如果计算得到的 t 统计量小于临界值,则接受原假设,认为两个样本的平均数差异不显著。
在进行两个样本平均数差异显著性检验时,需要确认数据满足以下假设:- 数据是从一个总体或两个独立总体中随机选取的;- 数据符合正态分布或样本大小足够大(通常要求每个样本的样本大小大于30);- 两个样本是独立的,即一个观测值对应一个样本。
如果数据不满足这些假设,则可能需要采用其他的非参数方法进行统计推断。
通过两个样本平均数差异显著性检验,可以帮助我们确定两个样本之间是否存在显著差异,从而进行有效的统计推断和决策。
一、独立大样本平均数差异显著性检验设有两个服从正态分布的相互独立的总体X和Y,它们的均值分别为和,方差分别为和,,,,…、和,,,…、,是分别来自X和Y的两组独立的随机样本,因而,我们要通过对两个样本带来的信息,检验出两总体均值和差异是否显著的结论。
(一)独立大样本的概念(识记)两个样本容量和都大于30的独立样本称为独立大样本。
(二)检验统计量(均用样本标准差表示的检验统计量)(简单运用)Z =(三)检验步骤及方法(用双侧检验)(综合运用)1、提出零假设和备择假设:双侧检验:H o:=;:≠单侧检验:H o:≥或≤;H1:﹥,或﹤2、根据样本信息和资料的性质,选择合适的检验统计量,并计算其值;3、确定双侧检验还是单侧检验(单侧检验确定左侧还是右侧检验)4、统计推断:选定显著性水平p,查相应的分布表来确定临界值,从而确定出零假设的拒绝区间或接受区间。
同时对零假设作出判断和解释:即把统计量与临界值相比较,若统计量值落在H o拒绝区间中,则拒绝H o;若统计量值落在Ho接受区间中,则接受H o。
[举例七]二、独立小样本平均数差异显著性检验(一)独立小样本的概念(识记)1、定义:两个样本容量和都小于30,或其中一个小于30的两独立样本为独立小样本。
2、独立小样本平均数差异显著性检验做方差齐性检验的原因。
在独立小样本平均数差异显著性检验中,总体方差未知,描述平均数之差的标准误可以用汇合方差表示。
而汇合方差是以两个相应总体方差相等为前提的,所以在进行独立样本平均数差异显著性检验之前要对两总体方差是否相等(齐性)做检验。
相关样本不做方差齐性检验的原因:相关样本是成对数据,每对数据都能求出差数,可以将平均数差异显著性检验转化为差数的显著性检验。
不需要用汇合方差。
独立大样本不做方差齐性检验的原因:独立大样本的平均数之差的标准误是根据大样本抽样原理建立起来的,不需要总体方差相等为前提。
(二)检验统计量(均用样本标准差表示的检验统计量)(简单运用)方差齐性检验公式:公式一:F=;分子值大于分母值;d f1=-1,df2=-1方差齐性检验前提下,做独立小样本平均数差异显著性检验:公式二:t=(三)检验步骤及方法(用双侧检验)(综合运用)做方差齐性检验:H o:=,:≠F=F值与F临界值比较,对总体方差齐性与否做推断,推断规则见表所示:[F检验统计推断规则表]当F检验结果F的实际值小于0.05显著性水平上的临界值时,方差齐性。