均数差异显著性检验.
- 格式:ppt
- 大小:1.89 MB
- 文档页数:25
t 检验计算公式:当总体呈正态分布,如果总体标准差未知,而且样本容量 一切可能的样本平均数与总体平均数的离差统计量呈 t 分布t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平■均数的差异 是否显著。
t 检验分为单总体t 检验和双总体t 检验。
1.单总体t 检验单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。
当总体分布是正态分布,如总体标准差 §未知且样本容量n<30,那么样本 平均数与总体平均数的离差统计量呈t 分布。
检验统计量为:X-*t = --------- 。
二 X.n — 1如果样本是届丁大样本(n>30)也可写成:,X - 1t = ---------Xn在这里,t 为样本平均数与总体平均数的离差统计量;X 为样本平■均数;H 为总体平■均数;□X 为样本标准差;n 为样本容量。
例:某校二年级学生期中英语考试成绩,其平■均分数为 73分,标准差为17 分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。
问二年级 学生的英语成绩是否有显著性进步?检验步骤如下: 第一步以0.05为显著性水平■, df=n-1=19 ,查t 值表,临界值第二步计算t 值 X -」t =c x79.2-73 17川3 .19第三步判断 n<30,那么这时 建立原假设H 0 :」=73因为,t(1 90).0广2. 0,9而样本离差的t = 1.63小与临界值2.093。
所以,接受原假设,即进步不显著2.双总体t检验双总体t检验是检验两个样本平■均数与其各自所代表的总体的差异是否显著。
双总体t检验乂分为两种情况,一是相关样本平均数差异的显著性检验,用丁检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
二是独立样本平均数的显著性检验。
各实验处理组之间毫无相关存在,即为独立样本。
一、计量资料的常用统计描述指标1.平均数平均数表示的是一组观察值(变量值)的平均水平或集中趋势。
平均数计算公式:式中:X为变量值、Σ为总和,N为观察值的个数。
2.标准差(S) 标准差表示的是一组个体变量间的变异(离散)程度的大小。
S愈小,表示观察值的变异程度愈小,反之亦然,常写成。
标准差计算公式:式中:∑X2 为各变量值的平方和,(∑X)2为各变量和的平方,N-1为自由度3.标准误(S⎺x)标准误表示的是样本均数的标准差,用以说明样本均数的分布情况,表示和估量群体之间的差异,即各次重复抽样结果之间的差异。
S⎺x愈小,表示抽样误差愈小,样本均数与总体均数愈接近,样本均数的可靠性也愈大,反之亦然,常写作。
标准误计算公式:三、显著性检验抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
1.显著性检验的含义和原理显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
2.无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。
3.“无效假设”成立的机率水平检验“无效假设”成立的机率水平一般定为5%(常写为p≤0.05),其含义是将同一实验重复100次,两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>0.05。
若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤0.05。
《生物统计学》复习题一、填空题(每空1分,共10分)1.变量之间的相关关系主要有两大类:(因果关系),(平行关系)2.在统计学中,常见平均数主要有(算术平均数)、(几何平均数)、(调和平均数)3.样本标准差的计算公式(1)(2--=∑nXXS)4.小概率事件原理是指(某事件发生的概率很小,人为的认为不会发生)5.在标准正态分布中,P(-1≤u≤1)=(0。
6826)(已知随机变量1的临界值为0.1587)6.在分析变量之间的关系时,一个变量X确定,Y是随着X变化而变化,两变量呈因果关系,则X称为(自变量),Y称为(依变量)二、单项选择题(每小题1分,共20分)1、下列数值属于参数的是:A、总体平均数B、自变量C、依变量D、样本平均数2、下面一组数据中属于计量资料的是A、产品合格数B、抽样的样品数C、病人的治愈数D、产品的合格率3、在一组数据中,如果一个变数10的离均差是2,那么该组数据的平均数是A、12B、10C、8D、24、变异系数是衡量样本资料程度的一个统计量。
A、变异B、同一C、集中D、分布5、方差分析适合于,数据资料的均数假设检验。
A、两组以上B、两组C、一组D、任何6、在t 检验时,如果t = t0、01,此差异是:A、显著水平B、极显著水平C、无显著差异D、没法判断7、生物统计中t检验常用来检验A、两均数差异比较B、两个数差异比较C、两总体差异比较D、多组数据差异比较8、平均数是反映数据资料性的代表值。
A、变异性B、集中性C、差异性D、独立性9、在假设检验中,是以为前提。
A、肯定假设B、备择假设C、原假设D、有效假设10、抽取样本的基本首要原则是A、统一性原则B、随机性原则C、完全性原则D、重复性原则11、统计学研究的事件属于事件。
A、不可能事件B、必然事件C、小概率事件D、随机事件12、下列属于大样本的是A、40B、30C、20D、1013、一组数据有9个样本,其样本标准差是0.96,该组数据的标本标准误(差)是A、0.11B、8.64C、2.88D、0.3214、在假设检验中,计算的统计量及事件发生的概率之间存在的关系是。
摘要:文章从样本容量大于30或小于30的独立大小样本两个方面论述样本平均数差异显著性检验的方法和步骤,对样本容量不同的试验结果差异显著性的各种检验进行的统计决断给出结论,并应用其原理结合实例对实际应用问题进行论证。
关键词:独立样本;差异;显著性检验;统计决断相关关系是日常生活和生产实际中经常存在的变量之间的关系。
在对相关关系的有关研究中,对同一组被试对象在试验前后进行同一测验,有时会产生两次测验结果,将测验的结果进行平均,并对总体均数差异的显著性进行检验。
在实际应用中,经常利用独立样本对总体平均数的差异进行检验。
所谓独立样本是指两个样本内的个体是随机抽取它们之间不存在一一对应关系(是一种非确定性关系),这样的两个样本称为独立样本。
两个独立样本平均数之间差异的显著性检验可以分独立大样本和独立小样本两种情况进行。
一、独立大样本平均数差异的显著性检验独立样本容量n1都n2大于30的独立样本称为独立大样本。
(一)两个独立大样本平均数之差的标准误1、两个独立大样本平均数之差的标■邢航独立样本均数差异的显著性检验及应用状的分析总结,“资本诅咒”现象在中国省级层面上基本存在的,但是也存在一定的特例,如山东既是资源大省,又是经济快速发展的经济大省。
目前对“资源诅咒”在中国的研究仍然处于起步阶段,虽然一些实证研究已经证明了“资源诅咒”在省际层面上是存在的,但是也有一些研究表明这种现象并不明显。
因此,在未来的研究中,还要进一步加大研究的广度和深度。
未来主要有以下方面的研究前景:第一,指标体系的进一步比较和确定。
如省际样本的选择是否合理,是否能够以城市样本作为研究对象,自然资源丰裕度的指标如何设置,经济增长指标如何设置。
第二,“资源诅咒”在一省内部是否存在。
由于中国地大物博,一个省内各地区的经济发展也可能存在很大的差异,这种差异性是否同样存在“资源诅咒”,尚无人研究。
第三,数据的存在一定难度,尤其是针对城市和小区域范围内的数据往往没有相应的统计。