函数的概念(第二课时)
- 格式:doc
- 大小:57.00 KB
- 文档页数:2
课时2 函数的概念(二)1.判断下列说法是否正确(正确的打“√”,错误的打“×”).(1)对应关系相同的两个函数一定是同一个函数.( ×)(2)[a ,a -1]表示一个区间.( × )(3)函数的定义域和值域都相同,这两个函数不一定是同一个函数.( √ )(4)函数y =k x的值域为R .( × )题型1 区间的概念2.用区间表示数集{x |2<x ≤4}=__(2,4]__.3.若[a,3a -1]为一确定区间,则a 的取值范围是 ⎝⎛⎭⎫12,+∞ .题型2 同一个函数4.下列各组函数是同一个函数的是( C )A .f (x )=-2x 3与g (x )=x -2xB .f (x )=x 2与g (x )=(x +1)2C .f (x )=x 0与g (x )=1x 0D .f (x )=0,g (x )=x -1+1-x解析:A.f (x )=-2x 3=-x -2x 与g (x )=x -2x 的对应关系不同,故不是同一个函数.B.f (x )=x 2与g (x )=(x +1)2的对应关系不同,故不是同一个函数.C.f (x )=x 0与g (x )=1x 0都可化为y =1且定义域是{x |x ≠0},故是同一个函数.D.f (x )=0与g (x )=x -1+1-x =0(x =1)的定义域不同,故不是同一个函数.5.若函数f (x )与函数g (x )=1-x x 是同一个函数,则函数f (x )的定义域是__(-∞,0)∪(0,1]__.解析:要使g (x )与f (x )有意义,则⎩⎪⎨⎪⎧1-x ≥0,x ≠0,解得x ≤1且x ≠0,∴f (x )的定义域为(-∞,0)∪(0,1]. 6.下列各对函数中是同一个函数的是__②④__.①f (x )=2x -1与g (x )=2x -x 0;②f (x )=(2x +1)2与g (x )=|2x +1|;③f (n )=2n +2(n ∈Z )与g (n )=2n (n ∈Z );④f (x )=3x +2与g (t )=3t +2.解析:①函数g (x )=2x -x 0=2x -1,定义域为{x |x ≠0},两函数的定义域不同,不是同一个函数;②f (x )=(2x +1)2=|2x +1|与g (x )=|2x +1|的定义域和对应关系相同,是同一个函数;③f (n )=2n +2(n ∈Z )与g (n )=2n (n ∈Z )的对应关系不同,不是同一个函数;④f (x )=3x +2与g (t )=3t +2的定义域和对应关系相同,是同一个函数.题型3 函数的值域7.函数y =x +1x -1在区间[2,5]上的值域是 ⎣⎡⎦⎤32,3 . 解析:由题意y =x +1x -1=2x -1+1,此函数在区间[2,5]上是减函数,所以有32≤y ≤3,故函数的值域是⎣⎡⎦⎤32,3.8.求下列函数的值域:(1)y =3-x 2x -1; (2)y =-x 2-x +1(1≤x ≤2).解:(1)y =-12·x -3x -12=-12⎝ ⎛⎭⎪⎫1-52x -12. 因为52x -12≠0,所以y ≠-12, 即函数的值域为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. (2)y =-x 2-x +1=-⎝⎛⎭⎫x +122+54.因为1≤x ≤2,所以-5≤-⎝⎛⎭⎫x +122+54≤-1,所以函数y =-x 2-x +1的值域为[-5,-1].易错点1 忽略定义域致错9.下列各组函数中,是同一个函数的是( A )A .f (x )=x 2-2x -1与g (t )=t 2-2t -1B .f (x )=2x ,g (x )=2(x +1)C .f (x )=(-x )2,g (x )=(-x )2D .f (x )=x 2+x x +1,g (x )=x解析:A 中两函数定义域相同,对应关系相同,所以是同一个函数;B 中对应关系不同;C 中定义域不同;D 中定义域不同.[误区警示] 两函数为同一个函数只有在定义域、对应关系相同的前提下才成立. 易错点2 忽视所换元的取值范围致错10.求函数y =x +x +1的值域.解:设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1+t =⎝⎛⎭⎫t +122-54.又因为t ≥0,故f (t )≥-1.所以函数的值域是{y |y ≥-1}.[误区警示] 二次函数求值域要注意自变量的取值范围.(限时30分钟)一、选择题1.已知函数f (x )=x 2+13的定义域为[0,1],则它的值域为( A ) A .⎣⎡⎦⎤13,56B .RC .⎣⎡⎦⎤13,12D .[]0,12.下列四个区间能表示数集A ={x |0≤x <5或x >10}的是( B )A .(0,5)∪(10,+∞)B .[)0,5∪(10,+∞)C .(]0,5∪[10,+∞)D .[0,5]∪(10,+∞)3.已知函数f (x )=2-2x x +1(x >1),则它的值域为( D ) A .(0,+∞)B .(-∞,0)C .(-1,0)D .(-2,0)解析:f (x )=2-2x x +1=-2(x +1)+4x +1=-2+4x +1(x >1),设t =x +1(t >2),易知:y =4t ∈(0,2),故f (x )=-2+4x +1(x >1)的值域为(-2,0). 4.(多选题)下列各组函数中表示同一个函数的是( BD )A .y =20与y =x xB .y =1(x >0)与y =|x |x(x >0) C .y =x 2+x 与y =x x +1D .y =x +1与y =3(t +1)3解析:A 中y =20=1,定义域为R ,y =x x=1(x ≠0),两个函数的定义域不相同,不是同一个函数;B .两个函数的对应关系、定义域相同,是同一个函数;C 中由x 2+x ≥0得x ≥0或x ≤-1,由⎩⎪⎨⎪⎧ x ≥0,x +1≥0得⎩⎪⎨⎪⎧x ≥0,x ≥-1,得x ≥0, 两个函数的定义域不相同,不是同一个函数.D 中y =3(t +1)3=t +1,两个函数的定义域和对应关系相同,是同一个函数.5.(多选题)函数f (x )=[x ]的函数值表示不超过x 的最大整数,当-12≤x ≤72时,下列函数中,其值域与f (x )的值域相同的函数为( ABD )A .y =x ,x ∈{}-1,0,1,2,3B .y =2x ,x ∈⎩⎨⎧⎭⎬⎫-12,0,12,1,32C .y =1x ,x ∈⎩⎨⎧⎭⎬⎫-1,1,12,13,14 D .y =x 2-1,x ∈{}0,1,2,3,2解析:由题意,可得当x ∈⎣⎡⎭⎫-12,0时,f (x )=-1;当x ∈[0,1)时,f (x )=0;当x ∈[1,2)时,f (x )=1;当x ∈[2,3)时,f (x )=2;当x ∈⎣⎡⎦⎤3,72时,f (x )=3.所以当x ∈⎣⎡⎦⎤-12,72时,函数f (x )的值域为{-1,0,1,2,3}.对于A 选项,y =x ,x ∈{-1,0,1,2,3},该函数的值域为{-1,0,1,2,3};对于B 选项,y =2x ,x ∈⎩⎨⎧⎭⎬⎫-12,0,12,1,32,该函数的值域为{-1,0,1,2,3};对于C 选项,y =1x ,x ∈⎩⎨⎧⎭⎬⎫-1,1,12,13,14,该函数的值域为{-1,1,2,3,4};对于D 选项,y =x 2-1,x ∈{}0,1,2,3,2,该函数的值域为{-1,0,1,2,3}.故选ABD.二、填空题6.已知区间(4p -1,2p +1),则p 的取值范围为__(-∞,1)__.解析:由题意,得4p -1<2p +1,所以p <1.7.函数f (x )=x 2-2x 的定义域为__(-∞,0]∪[2,+∞)__,值域为__[0,+∞)__. 解析:要使函数有意义,则需x 2-2x ≥0,解得x ≥2或x ≤0,即定义域为(-∞,0]∪[2,+∞).因为f (x )=x 2-2x =(x -1)2-1,结合函数的定义域可得f (x )≥0,即函数的值域为[0,+∞).8.由“不超过x 的最大整数”这一关系所确定的函数称为取整函数,通常记为y =[x ],例如[1.2]=1,[-0.3]=-1,则函数y =2[x ]+1,x ∈[-1,3)的值域为__{-1,1,3,5}__.三、解答题9.若函数f (x )=x 2+4x +6,求f (x )在[-3,0]上的值域.解:f (x )=x 2+4x +6=(x +2)2+2,x ∈[-3,0],f (x )max =f (0)=6,f (x )min =f (-2)=2,故f (x )在[-3,0]上的值域为[2,6].10.已知矩形的面积为10,试构建问题情境描述下列变量关系:(1)y =10x; (2)y =2x +20x. 解:(1)设矩形长为x ,宽为y ,那么y =10x. 其中x 的取值范围A ={x |x >0},y 的取值范围B ={y |y >0},对应关系f 为每一个长方形的长x ,对应到唯一确定的宽10x. (2)设矩形长为x ,周长为y ,那么y =2x +20x.其中x 的取值范围A ={x |x >0},y 的取值范围B ={y |y >0},对应关系f 为每一个长方形的长x ,对应到唯一确定的周长2x +20x .。
1.2函数的概念和性质1.2.1对应、映射和函数第二课时函数的概念在现实生活中,我们可能会遇到下列问题:(1)某地区城乡居民人民币储蓄存款(年底余额)随时间的变化如下表:(2)一物体从静止开始下落,下落的距离y(m)与下落时间x(s)之间近似地满足关系式y=4.9x2.若一物体下落2 s,你能求出它下落的距离吗?(3)下图为某市一天24小时内的气温变化图.①上午6时的气温约是多少?全天的最高、最低气温分别是多少?②在什么时刻,气温为0℃?③在什么时段内,气温在0℃以上?如何用集合语言来阐述上述3个问题的共同特点?1.函数的定义设A,B是两个非空的数集,如果按照某种对应法则f,对于集合A中的任何一个数x,在集合B中都有唯一的数y和它对应,这样的对应f叫作定义于A取值于B的函数,记作f:A→B或者y=f(x)(x∈A,y∈B).2.函数的定义域、值域在函数的定义中,集合A叫作函数的定义域,与x∈A对应的数y叫x的像,记作y=f(x),由所有x∈A的像组成的集合叫作函数的值域.3.函数的三要素为定义域,对应法则,值域.举出几个有关函数的例子,并用定义加以描述,指出函数的定义域和值域.[提示](1)下表记录了几个不同气压下水的沸点.,值域是{81,100,121,152,179}.(2)如图是匀速直线运动路程s随时间变化的函数关系图,它的定义域是{t|t≥0},值域是{s|s≥0}.[例1](1)A=R,B={x|x>0},f:x→y=|x|;(2)A=Z,B=Z,f:x→y=x2;(3)A=R,B=Z,f:x→y=x;(4)A=[-1,1],B={0},f:x→y=0.[思路点拨]可根据函数的定义直接判断.[解](1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一一个确定的整数x2与其对应,故是集合A到集合B的函数;(3)A中元素负数没有平方根,故在B中没有对应的元素且x不一定为整数,故此对应关系不是A到B的函数;(4)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一一个确定的数0与它对应,故是集合A到集合B的函数.1.若集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},则下列图形给出的对应中能构成从A 到B 的函数f :A →B 的是( )解析:选D A 中的对应不满足函数的存在性,即存在x ∈A ,但B 中无与之对应的y ;B 、C 均不满足函数的唯一性,只有D 正确.2.下列对应或关系式中是A 到B 的函数的是( )A .A =R ,B =R ,x 2+y 2=1 B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1解析:选B A 错误,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一.B 正确,符合函数的定义.C 错误,2∈A ,在B 中找不到与之相对应的数.D 错误,-1∈A ,在B 中找不到与之相对应的数.[例2] 已知f (x )=1-x1+x(x ≠-1).求: (1)f (0)及f ⎝⎛⎭⎫ f ⎝⎛⎭⎫12的值; (2)f (1-x )及f (f (x )).[思路点拨] 将f (x )中的x 分别赋值或式子,代入1-x1+x 中化简即得.[解] (1)f (0)=1-01+0=1,f ⎝⎛⎭⎫12=1-121+12=13, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫13=1-131+13=12. (2)f (1-x )=1-(1-x )1+(1-x )=x2-x (x ≠2).f (f (x ))=f ⎝ ⎛⎭⎪⎫1-x 1+x =1-1-x 1+x 1+1-x 1+x =x (x ≠-1).3.已知函数f (x )=x 2-2x ,求: (1)f (-2); (2)f ⎝⎛⎭⎫1+1x (x ≠0); (3)若f (x )=3,求x 的值. 解:(1)f (-2)=(-2)2-2·(-2)=8. (2)f ⎝⎛⎭⎫1+1x =⎝⎛⎭⎫1+1x 2-2⎝⎛⎭⎫1+1x=⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+1x -2 =⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1x -1=1x2-1(x ≠0). (3)若f (x )=3,则x 2-2x =3,x =-1或x =3.1.若f (x )=1x 的定义域为M ,g (x )=|x |的定义域为N ,令全集U =R ,则M ∩N =( ) A .M B .N C .∁R MD .∁R N解析:选A M ={x |x >0},N =R ,∴M ∩N =M . 2.下列图形中,不可能是函数y =f (x )的图象的是( )解析:选B 根据函数的存在性和唯一性(定义)可知,B 不正确. 3.下列各对函数中,图象完全相同的是( ) A .y =x 与y =(3|x |)3 B .y =(x )2与y =|x | C .y =xx 与y =x 0D .y =x +1x 2-1与y =1x -1解析:选C 若函数的图象相同,则是相同的函数.对于A ,y =(3|x |)3=|x |,所以对应关系不同;对于B ,y =(x )2=x (x ≥0),所以两函数定义域与对应关系均不同;对于C ,y =xx =1(x ≠0),而y =x 0=1(x ≠0),定义域与对应关系均相同,是相同的函数;对于D ,y =x +1x 2-1=x +1(x +1)(x -1)=1x -1,其中x 2≠1,即x ≠±1,而y =1x -1中x ≠1,定义域不同,不是相同函数.4.已知f (x )=11+x,g (x )=x 2+2,则f (2)=________,f [g (2)]=________. 解析:f (2)=11+2=13,g (2)=22+2=6, ∴f [g (2)]=f (6)=11+6=17.答案:13 175.已知函数f (x )=x 2-x ,若f (a )=2,则a 的值是________. 解析:f (a )=(a )2-a =2.即(a -2)(a +1)=0,a =4. 答案:4通过这节课的学习,你对函数符号“y =f (x )”有了哪些新的认识?对应关系f 是表示定义域和值域的一种对应关系,与所选择的字母无关.符号y =f (x )是“y 是x 的函数”的数学表示,应理解为:x 是自变量,它是对应关系所施加的对象;f 是对应关系,它既可以是解析式,也可以是图象、表格或文字描述.y =f (x )仅仅是函数符号,不能理解为“y 等于f 与x 的乘积”.f (x )与f (a )的区别与联系:f (a )表示当x =a 时函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,表示的是变量.虽然f (x )=x 2和f (x -1)=x 2等号右边的表达式都是x 2,但是,由于f 施加的对象不同(一个为x ,而另一个为x -1),因此两个函数的解析式是不同的.一、选择题1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集合N 的函数关系的是( )解析:选D 由函数的定义可以判断只有D 正确.2.函数f (x )定义在区间[-2,3]上,则y =f (x )的图象与直线x =2的交点个数为( ) A .0 B .1 C .2D .不确定解析:选B ∵2∈[-2,3],由函数的定义可知,y =f (x )的图象与x =2只能有一个交点. 3.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x解析:选C 对选项C ,当x =4时,y =83>2不合题意,故选C.4.下列说法错误的是( )A .函数定义域中的任一元素在其值域中都有它的对应B .函数的定义域是无限集,则值域也是无限集C .定义域与对应关系确定后,函数值域也就确定了D .若函数的定义域只有一个元素,则值域也只有一个元素 答案:B 二、填空题5.已知函数f (x )=x 2+|x -2|,则f (1)=________. 解析:∵f (x )=x 2+|x -2|, ∴f (1)=12+|1-2|=1+1=2. 答案:26.若f (2x )=x 3,则f (1)=________. 解析:令2x =1,则x =12,∴f (1)=(12)3=18.答案:18三、解答题7.已知函数f (x )=x 2+x -1,求: (1)f (2); (2)f ⎝⎛⎭⎫1x +1;(3)若f (x )=5,求x 的值. 解:(1)f (2)=4+2-1=5. (2)f ⎝⎛⎭⎫1x +1=⎝⎛⎭⎫1x +12+⎝⎛⎭⎫1x +1-1 =1x 2+3x+1. (3)f (x )=5,即x 2+x -1=5. 由x 2+x -6=0得x =2或x =-3. 8.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值;(2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值;(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 019)+f ⎝⎛⎭⎫12 019的值. 解:(1)∵f (x )=x 21+x 2,∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1, f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1, ∴f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, f (4)+f ⎝⎛⎭⎫14=1,…,f (2 019)+f ⎝⎛⎭⎫12 019=1. ∴f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 019)+f ⎝⎛⎭⎫12 019=2 018.。
《5.2.1 三角函数的概念(第二课时)》教学设计1.掌握三角函数值的符号;2.掌握诱导公式一,初步体会三角函数的周期性.教学重点:函数值的符号、诱导公式一.教学难点:对诱导公式的发现与认识.PPT课件.资源引用:【知识点解析】三角函数值在各象限的符号、【知识点解析】对三角函数值符号的理解(一)创设情境引导语:前面学习了三角函数的定义,根据已有的学习函数的经验,你认为接下来应研究三角函数的哪些问题?预设的师生活动:先由学生发言.一般而言,学生会直接把问题指向“图象与性质”.教师可以在肯定学生想法的基础上,指出三角函数的特殊性:预设答案:因为单位圆上点的坐标或坐标比值就是三角函数,而单位圆具有对称性,这种对称性反映到三角函数的取值规律上,就会呈现出比幂函数、指数函数和对数函数等更丰富的性质.例如,我们可以从定义出发,结合单位圆的性质直接得到一些三角函数的性质.设计意图:明确研究的问题和思考方向.一般地,学生不习惯于借助单位圆的性质研究三角函数的性质,所以需要教师的讲解和引导.(二)新知探究1.三角函数值的符号问题1:由三角函数的定义以及任意角α的终边与单位圆交点所在的象限,你能发现正弦函数、余弦函数和正切函数的值的符号有什么规律吗?如何用集合语言表示这种规律?预设的师生活动:由学生独立完成.★资源名称:【知识点解析】三角函数值在各象限的符号★使用说明:本资源展现“三角函数值在各象限的符号”,辅助教师教学,加深学生对于知识的理解和掌握.适合于教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设答案:用集合语言表示的结果是:当α∈{β|2k π<β<2k π+π,k ∈Z }时,sin α>0;当α∈{β|2k π+π<β<2k π+2π,k ∈Z }时,sin α<0;当α∈{β|β=k π,k ∈Z }时,sin α=0.其他两个函数也有类似结果.设计意图:在直角坐标系中标出三角函数值的符号规律不难,可由学生独立完成.用集合语言表示,可以复习象限角、终边相同的角的集合表示等.例1 求证:角θ为第三象限角的充要条件是⎩⎪⎨⎪⎧sin θ<0,①tan θ>0.② 预设的师生活动:先引导学生明确问题的条件和结论,再由学生独立完成证明. 预设答案:先证充分性.因为①式sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角. 再证必要性.因为角θ为第三象限角,由定义①②式都成立.设计意图:通过联系相关知识,培养学生的推理论证能力.★资源名称:【知识点解析】对三角函数值符号的理解★使用说明:本资源展现“对三角函数值符号的理解”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.2.诱导公式一问题2:联系三角函数的定义、象限角以及终边相同的角的表示,你有发现什么? 师生活动:学生在问题引导下自主探究,发现诱导公式一.追问:(1)观察诱导公式一,对三角函数的取值规律你有什么进一步的发现?它反映了圆的什么特性?(2)你认为诱导公式一有什么作用?预设答案:(1)诱导公式一体现了三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.(2)利用公式一可以把求任意角的三角函数值,转化为求0~2π角的三角函数值.同时,由公式一可以发现,只要讨论清楚三角函数在区间[0,2π]上的性质,那么三角函数在整个定义域上的性质就清楚了.设计意图:引导学生通过建立相关知识的联系发现诱导公式一及其体现的三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.在此过程中,可以培养学生用联系的观点看待问题,发展直观想象等素养.例2 确定下列三角函数值的符号,然后用计算器验证:(1)cos 250°;(2)sin ⎪⎭⎫ ⎝⎛-4π; (3)tan (-672°); (4)tan 3π.解:(1)因为250°是第三象限角,所以cos 250°<0;(2)因为4π-是第四象限角,所以sin ⎪⎭⎫ ⎝⎛-4π<0; (3)因为tan (-672°)=tan (48°-2×360°)=tan 48°,而48°是第一象限角, 所以tan (-672°)>0;(4)因为tan 3π=tan (π+2π)=tan π,而π的终边在x 轴上,所以tan π=0.例3 求下列三角函数值:(1)sin 1 480°10′(精确到0.001);(2)cos4π9; (3)tan ⎪⎭⎫ ⎝⎛-6π11. 解:(1)sin 1480°10′=sin (40°10′+4×360°)=sin 40°10′≈0.645;(2)9πππcos cos(2π)cos 4442=+==;(3)11πππtan()tan(2π)tan 6663-=-==. 师生活动:以上都是教科书中的例题,难度不大,可以由学生独立完成,并作课堂展示.教师可以鼓励学生采用不同的变形方法得出答案.在用计算器验证时,提醒学生注意角度制的设置.(三)课堂练习教科书练习第1,2,3,4,5题.(四)布置作业教科书习题5.2第1,3,4,5,7,8,9,10题.(五)目标检测设计1.求下列三角函数的值:(1)cos (-23π6); (2)tan 25π6. 设计意图:考查诱导公式一,特殊角的三角函数值.2.角α的终边与单位圆的交点是Q ,点Q 的纵坐标是12,说出几个满足条件的角α. 设计意图:考查正弦函数的定义,诱导公式一.3.对于①sin θ>0,②sin θ<0,③cos θ>0,④cos θ<0,⑤tan θ>0与⑥tan θ<0,选择恰当的关系式序号填空:(1)角θ为第二象限角的充要条件是________;(2)角θ为第三象限角的充要条件是________.设计意图:考查三角函数值的符号规律.。
第三章函数的概念与性质3.1函数的概念及其表示第2课时函数的表示方法【课程标准】1.了解函数的三种表示法及各自的优缺点.2.掌握求函数解析式的常见方法.3.会用解析法及图象法表示分段函数.4.给出分段函数,能研究有关性质.【知识要点归纳】1.函数的三种表示方法注意:2.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的;各段函数的定义域的交集是.注意:(1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.(3)分段函数的图象要分段来画.3.求函数解析式的方法(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式.(2)已知f (g (x ))=h (x ),求f (x ),常用的有两种方法:①换元法,即令t =g (x ),解出x ,代入h (x )中,得到一个含t 的解析式,即为函数解析式,注意:换元后新元的范围.②配凑法,即从f (g (x ))的解析式中配凑出“g (x )”,即用g (x )来表示h (x ),然后将解析式中的g (x )用x 代替即可.(3)方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).【经典例题】(一)注意:(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满足函数的概念.(2)在实际操作中,仍以解析法为主. 例1 已知函数f (x ),g (x )分别由下表给出(1)f (g (3))=__________; (2)若g (f (x ))=2,则x =__________. (二) 图象法作函数图象的步骤及注意点(1)作函数图象主要有三步:列表、描点、连线.作图象时应先确定函数的定义域,再在定义域内化简函数解析式,再列表画出图象.(2)函数的图象可能是平滑的曲线,也可能是一群孤立的点,画图时要注意关键点,如图象与坐标轴的交点、区间端点、二次函数的顶点等等. 例2 作出下列函数的图象并求出其值域. (1)y =2x ,x ∈[2,+∞); (2)y =x 2+2x ,x ∈[-2,2] (3)y =x +1(x ≤0) (三) 分段函数注意:(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求解.对于含有多层“f ”的问题,要按照“由内到外”的顺序,逐层处理. (2)已知函数值,求自变量的值时,要先将“f ”脱掉,转化为关于自变量的方程求解.(3)求解函数值得的不等式时,直接转化为不等式求解,也可通过图象。