专题立体几何与空间向量
- 格式:doc
- 大小:25.00 KB
- 文档页数:8
空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。
设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。
设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。
设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。
向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。
向量具有平移不变性。
2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。
运算法则包括三角形法则、平行四边形法则和平行六面体法则。
3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。
共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。
4.共面向量:能平移到同一平面内的向量叫做共面向量。
5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。
若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。
6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
高中数学专题16立体几何与空间向量真题1.如图,正方体的一个截面经过顶点A,C及棱EF上一点K,且将正方体分成体积比为3:1的两部分,则的值为.【答案】【解析】设.截面与FG交于J.,解得(舍去)故.2.设点P到平面的距离为3,点Q在平面上,使得直线PQ与所成角不小于30°且不大于60°,则这样的点Q所构成的区域的面积为.【答案】【解析】设点P在平面上的射影为O.由条件知,.即OQ∈[1,3],故所求的区域面积为.3.在正三棱锥中,,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_____________。
【答案】【解析】设的中点分別为,则易证平面A BM即为平面由平行四边形的性质知,所以,又直线P C在平面上的射影为直线MK,由得因此,棱P C与平面所成角的余弦值为.故答案为:4.设P为一圆锥的顶点,A、B、C为其底面圆周上的三点,满足∠ABC=90°,M为AP的中点.若AB =1,AC=2,AP=,则二面角M-BC-A的大小为________.【答案】【解析】由,知AC为底面圆的直径.如图所示,设底面中心为O.于是,平面ABC.故.设H为M在底面上的射影.则H为AO的中点.在底面中作于点K.由三垂线定理知.从而,为二面角M-BC-A的平面角.由,结合得:.故二面角M-BC-A的大小为.5.四棱锥P-ABCD中,已知侧面是边长为1的正三角形,M、N分别为边AB、BC的中点.则异面直线MN与PC之间的距离为___________.【答案】【解析】如图,设底面对角线AC与BD交于点O,过点C作直线MN的垂线,与MN交于点H.由于PO为底面的垂线,故PO⊥CH.又AC⊥CH,于是,CH与平面POC垂直.从而,CH⊥PC.因此,CH为直线MN与PC的公垂线段.注意到,.故异面直线MN与PC之间的距离为.6.已知正三棱锥底面边长为1,高为.则其内切球半径为______.【答案】【解析】如图,设球心在平面与平面内的射影分别为,边的中点为,内切球半径为.则分别三点共线,,且.故.解得.7.设同底的两个正三棱锥内接于同一个球.若正三棱锥的侧面与底面所成的角为,则正三棱锥的侧面与底面所成角的正切值是______.【答案】4【解析】如图6,联结.则,垂足为正的中心,且过球心.联结并延长与交于点.则为边的中点,且.易知,分别为正三棱锥、正三棱锥的侧面与底面所成二面角的平面角. 则.由.故.8.在四面体中,已知.则四面体的外接球的半径为______.【答案】【解析】易知,为正三角形,且CA=CB.如图,设P、M分别为AB、CD的中点,联结PD、PC.则平面平面PDC.设的外心为N,四面体ABCD的外接球的球心为O.则.可求得由题意知.在中,由余弦定理得又因为D、M、O、N四点在以DO为直径的圆上所以故外接球的体积.9.已知正三棱柱的9条棱长都相等,是边的中点,二面角.则________.【答案】【解析】解法1 如图,以所在直线为轴、线段的中点为原点、所在直线为轴建立空间直角坐标系.设正三棱柱的棱长为2.则.故.设分别与平面、平面垂直的向量为.则由此可设.所以,,即.因此,.解法2如图..设交于点.则平面.又,则平面.过点在平面上作,垂足为,联结.则为二面角的平面角.设.易求得.在中,.又,则.故.1.四面体P-ABC,,则该四面体外接球的半径为________. 【答案】【解析】将四面体还原到一个长方体中,设该长方体的长、宽、高分别为a,b,c,则,所以四面体外接球的半径为.2.四面体ABCD中,有一条棱长为3,其余五条棱长皆为2,则其外接球的半径为____.【答案】【解析】解:设BC=3,AB=AC=AD=BD=CD=2,E,F分别是BC,AD的中点,D在面ABC上的射影H应是△ABC的外心,由于DH上的任一点到A,B,C等距,则外接球心O在DH上,因,所以AE=DE,于是ED为AD的中垂线是,顒球心O是DH,EF的交点,且是等腰△EAD的垂心,记球半径为r,由△DOF~△EAF,得.而,所以.3.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为正方形,P A=AB.E、F分别为PD、BC的中点,则二面角E-FD-A的正切值为________.【答案】【解析】如图,作EH⊥AD于H,连HF.由P A⊥面ABCD,知P A⊥AD,EH∥P A,EH⊥ABCD.作HG⊥DF于G,连EG,则EG⊥FD,∠EGH为二面角E-FD-A的平面角.∵ABCD为正方形,E、F分别为PD、BC的中点,∴H为AD中点,FH⊥AD.设P A=AB=2,则,FH=2,HD=4,.∴.∴二面角E-FD-A的正切值为.4.已知正四面体内切球的半径是1,则该正四面体的体积为________.【答案】【解析】设正四面体的棱长为.则该正四面体的体积为,全面积为,所以,解得.从而正四面体的体积为.故答案为:5.正方体AC1棱长是1,点E、F是线段DD1,BC1上的动点,则三棱锥E一AA1F体积为___.【答案】【解析】因为F是BC1上的动点,所以在正方体中有,利用等体积转化有.故答案为.6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥HB,垂足为H,且P A=4,C为P A的中点,则当三棱锥O-HPC的体积最大时,OB的长为________.【答案】【解析】法一:AB⊥OB,PB⊥AB,AB⊥面POB,面P AB⊥面POB.OH⊥PB,OH⊥面P AB,OH⊥HC,OH⊥PC,又,PC⊥OC,PC⊥面OCH.PC是三棱锥P-OCH的高.PC=OC=2.而△OCH的面积在时取得最大值(斜边=2的直角三角形).当时,由,知∠OPB=30°,.法二:由C为P A中点,故,而.记则,.∴令,得,.故答案为:7.如图,在正三棱柱中,AB=2,,D、F分别是棱AB、的中点,E为棱AC 上的动点,则△DEF周长的最小值为__________.【答案】【解析】由正三棱锥可得底面ABC,所以AB,AC.在Rt△ADF中,.如图①,把底面ABC与侧面在同一个平面内展开,展开图中只有当D、E、F三点在同一条直线上时,DE+EF取得最小值.如图②,在△ADF中,,由余弦定理可得.所以△DEF周长的最小值为.8.在边长为1的长方体内部有一小球,该小球与正方体的对角线段相切,则小球半径的最大值=___________.【答案】【解析】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点的三个面相切.以为原点,分别为x、y、z轴正方向,建立空间直角坐标系.设A(0,1,1),(1,0,0),小球圆心P(r,r,r),则P到的距离.再由,得.故答案为:9.正方体中,E为AB的中点,F为的中点.异面直线EF与所成角的余弦值是_____. 【答案】【解析】设正方体棱长为1,以DA为x轴,DC为y轴,为z轴建立空间直角坐标系,则.故有.所以.故答案为:10.在半径为R的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】【解析】设内接圆柱底面半径为,则高位,那么全面积为.其中,等号成立的条件是.故最大值为.故答案为:11.已知空间四点满足,且是三棱锥的外接球上的一个动点,则点到平面的最大距离是______.【答案】【解析】将三棱锥补全为正方体,则两者的外接球相同.球心就是正方体的中心,记为,半径为正方体对角线的一半,即为.在正方体里,可求得点到平面的距离为,则点到平面的最大距离是.12.在正四核锥中,已知二面角的正弦值为,则异面直线所成的角为______.【答案】【解析】如图,设的交点为上的射影为,则.又因为,因此,所以,则.因此即为二面角的平面角,从而.设,则.在中,.由此得,因此,解得.从而四棱锥各侧面均为正三角形,则异面直线所成的角为.13.半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________【答案】14【解析】设四个球的球心分别为A、B、C、D,则AB=BC=CA=12,DA=DB=DC=13,即A、B、C、D两两连结可构成正三棱锥.设待求的球心为X,半径为r.,则由对称性可知DX平面ABC.也就是说,X在平面ABC上的射影是正三角形ABC的中心O.易知.设OX=x,则由于球A内切于球X,所以AX=r-6即①又DX=OD-OX=11-x,且由球D内切于球X可知DX=r-7于是②从①②两式可解得即大球的半径为14.故答案为:1414.一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2【解析】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为,小正四面体的外接球(大正四面体的内切球)半径为,易知,故小正四面体棱长的最大值为.15.已知棱长的正方体内部有一圆柱,此圆柱恰好以直线为轴,则该圆柱体积的最大值为_____.【答案】【解析】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在、AC、上.设线段上的切点为E,圆柱上底面中心为,半径.由,则圆柱的高为,由导数法或均值不等式得.。
⾼中数学知识点总结⼤全空间向量与⽴体⼏何⾼中数学知识点总结空间向量与⽴体⼏何⼀、考点概要:1、空间向量及其运算(1)空间向量的基本知识:①定义:空间向量的定义和平⾯向量⼀样,那些具有⼤⼩和⽅向的量叫做向量,并且仍⽤有向线段表⽰空间向量,且⽅向相同、长度相等的有向线段表⽰相同向量或相等的向量。
②空间向量基本定理:ⅰ定理:如果三个向量不共⾯,那么对于空间任⼀向量,存在唯⼀的有序实数组x、y、z,使。
且把叫做空间的⼀个基底,都叫基向量。
ⅱ正交基底:如果空间⼀个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当⼀个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常⽤表⽰。
ⅳ空间四点共⾯:设O、A、B、C是不共⾯的四点,则对空间中任意⼀点P,都存在唯⼀的有序实数组x、y、z,使。
③共线向量(平⾏向量):ⅰ定义:如果表⽰空间向量的有向线段所在的直线互相平⾏或重合,则这些向量叫做共线向量或平⾏向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平⾏的充要条件是:存在实数λ,使。
④共⾯向量:ⅰ定义:⼀般地,能平移到同⼀平⾯内的向量叫做共⾯向量;空间的任意两个向量都是共⾯向量。
ⅱ向量与平⾯平⾏:如果直线OA平⾏于平⾯或在α内,则说向量平⾏于平⾯α,记作。
平⾏于同⼀平⾯的向量,也是共⾯向量。
ⅲ共⾯向量定理:如果两个向量、不共线,则向量与向量、共⾯的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共⾯的条件:当、、都是⾮零向量时,共⾯向量定理实际上也是、、所在的三条直线共⾯的充要条件,但⽤于判定时,还需要证明其中⼀条直线上有⼀点在另两条直线所确定的平⾯内。
ⅴ共⾯向量定理的推论:空间⼀点P在平⾯MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意⼀定点O,有。
⑤空间两向量的夹⾓:已知两个⾮零向量、,在空间任取⼀点O,作,(两个向量的起点⼀定要相同),则叫做向量与的夹⾓,记作,且。
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。
专题空间向量与立体几何(六个混淆易错点)易错点1对空间向量的运算理解不清1.在棱长为1的正四面体A BCD -中,点M 满足()1AM xAB y AC x y AD =++--,点N 满足()1DN DB DC λλ=-- ,当线段AM 、DN 的长度均最短时,AM AN ⋅= ()A .23B .23-C .43D .43-【答案】A【分析】根据题意得到M ∈平面BCD ,N ∈直线BC ,从而求得,AM DN 最短时,得到M 为BCD △的中心,N 为BC 的中点,求得AM 的长,结合向量的运算公式,即可求得AM AN ⋅的值.【详解】解:如图所示,因为(1)AM x AB y AC x y AD =++-- ,()1DN DB DC λλ=--,可得M ∈平面BCD ,N ∈直线BC ,当,AM DN 最短时,AM ⊥平面BCD ,且DN BC ⊥,所以M 为BCD △的中心,N 为BC 的中点,如图所示,又由正四面体的棱长为1,所以13NM DN ==AN =所以3AM =,因为AM ⊥平面BCD ,所以AM MN ⊥,所以Rt ANM △中,6223cos 332AM MAN AN ∠===,所以326222cos 333AM AN AM AN MAN ⋅=⋅∠=⨯=⨯ 故选:A2.下列命题中正确的个数是().①若a 与b 共线,b 与c 共线,则a 与c共线.②向量a ,b ,c共面,即它们所在的直线共面.③如果三个向量a ,b ,c不共面,那么对于空间任意一个向量p ,存在有序实数组(),,x y z ,使得p xa yb zc =++.④若a ,b 是两个不共线的向量,而c a b λμ=+(,λμ∈R 且0λμ≠),则{},,a b c 是空间向量的一组基底.A .0B .1C .2D .3【答案】B【分析】举例0b =,判断①,由向量共面的定义判断②,由空间向量基本定理判断③,由共面向量定理和空间向量基本定理判断④.【详解】①当0b = 时,a 与c不一定共线,故①错误;②当a ,b ,c共面时,它们所在的直线平行于同一平面,或在同一平面内,故②错误;由空间向量基本定理知③正确;④当a ,b 不共线且c a b λμ=+时,a ,b ,c 共面,故④错误.故选:B .3.以下命题:①若//a b r r ,则存在唯一的实数λ,使得λa b = ;②若a b b c ⋅=⋅r r r r,则a c = 或0b = ;③若{},,a b c为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底;④()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ 一定成立.则其中真命题的个数为()A .4B .3C .2D .1【答案】C【分析】由共线向量的基本定理判断①;由数量积判断②;由基底的概念判断③;由数量积的性质判断④【详解】对于①:根据共线向量的基本定理,//a b r r 的充要条件是存在唯一的实数λ,使得λa b = ,其中0b ≠r r;这里没有限制b,所以①错误;对于②:cos ,,cos ,a b a b a b b c b c b c ⋅=⋅⋅=⋅r r r r r r r r r r r r ,若a b b c ⋅=⋅r r r r ,则cos ,cos ,a a b c b c ⋅=r r r r r r ,即只要a 在b 上的投影与c 在b 上的投影相等即可,故②错误;对于③:若{},,a b c 为空间的一个基底,则,,a b c不共面,则,,a b b c c a +++ 也不共面,则{},,a b b c c a +++构成空间的另一个基底,故③正确;对于④:因为,a b b a c d d c ⋅=⋅⋅=⋅,所以()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ ,故④正确;所以正确的有2个,故选:C4.下面四个结论正确的个数是()①空间向量(),0,0a b a b ≠≠ ,若a b ⊥ ,则0a b ⋅=;②若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线;③已知向量(1,1,)a x = ,(3,,9)b x =- ,若310x <,则,a b 〈〉为钝角;④任意向量,,a b c 满足()()a b c a b c ⋅⋅=⋅⋅.A .4B .3C .2D .1【答案】C【分析】根据空间向量的线性运算、向量平行的意义及坐标表示、数量积的定义、性质对各命题逐一判断即可.【详解】对于①,因0,0a b ≠≠ ,a b ⊥ ,则·0a b =,①正确;对于②,因1344PC PA PB =+ ,则1144PC PA - =3344PB PC -,即3AC CB = ,即A 、B 、C 三点共线,②正确;对于③,a b ⋅ =10x -3,若,a b 〈〉 为钝角,则0a b ⋅< ,且a 与b 不共线,由0a b ⋅<得310x <,当//a b 时,1139xx ==-,即3x =-,由a 与b 不共线得3x ≠-,于是得当310x <且3x ≠-时,,a b 〈〉为钝角,③错误;对于④,()a b c ⋅⋅ 是c 的共线向量,而()a b c ⋅⋅是a 的共线向量,④错误,综上可知,①②正确.故选:C5.(多选)给出下列命题,其中正确的是()A .若{},,a b c是空间的一个基底,则{},,a b b c +r r r r 也是空间的一个基底B .在空间直角坐标系中,点()2,4,3P -关于坐标平面yOz 的对称点是()2,4,3---C .若空间四个点P ,A ,B ,C 满足1344PC PA PB =+,则A ,B ,C 三点共线D .平面α的一个法向量为()1,3,4m =-u r ,平面β的一个法向量为()2,6,n k =--r.若//αβ,则8k =【答案】ACD【分析】根据三个向量是否共面判断A ,由点关于坐标面的对称判断B ,由向量的运算确定三点共线可判断C ,根据向量共线求参数可判断D 。
空间向量与立体几何知识点汇总知识点一 空间向量及其运算(一)、空间向量在空间,我们把具有大小和方向的量叫做向量。
1. 空间的一个平移就是一个向量。
2. 向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。
相等向量只考虑其定义要素:方向,大小。
3. 空间的两个向量可用同一平面内的两条有向线段来表示。
(二)、共线向量1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.2.共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb 。
(三)、两个向量的数量积1.定义:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。
2.空间向量数量积的性质① ||cos ,a e a a e ⋅=<>; ② 0a b a b ⊥⇔⋅=; ③ 2||a a a =⋅.3.空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅;②a b b a ⋅=⋅(交换律);③()a b c a b a c ⋅+=⋅+⋅(分配律)。
(四)、空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
(五)、空间直角坐标系:1.若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示。
A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。
专题立体几何与空间向量作者:朱振华来源:《高考进行时·高三数学》2012年第12期(1)当BD的长为多少时,三棱锥的ABCD体积最大;(2)当三棱锥ABCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD 上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.图1图2(作者:卢杰江苏省丹阳高级中学)立体几何在高考中占有重要的地位,近几年对立体几何考查的重点与难点趋于稳定(也是考生的基本得分点):高考始终把直线与直线、直线与平面、平面与平面的平行的判断与性质、垂直的判断与性质作为考查的重点。
新课标教材对立体几何要求虽有所降低,但考查的重点一直没有变,常常考查线线、线面、面面的平行与垂直的位置关系和选修中的空间角与距离的计算。
在现有的必修教材中,虽淡化了利用空间关系找角、找距离这方面的讲解,但在理科选修教材中加大了向量的应用。
学习空间向量后,立体几何问题大多可以用向量的知识来做,从而使解题更简捷有效。
对空间向量的考查主要集中于向量概念与运算,要涉及空间向量的坐标及运算、空间向量的应用,尤其是求夹角、求距离。
一、考纲要求1. 空间几何体:该部分要牢牢抓住各种空间几何体的结构特征,通过对各种空间几何体结构特征的了解,认识各种空间几何体直观图,在此基础上掌握好空间几何体的表面积和体积的计算方法;2. 空间点、直线、平面的位置关系:该部分的基础是平面的性质、空间直线与直线的位置关系,重点是空间线面平行和垂直关系的判定和性质,面面平行和垂直关系的判定和性质.在复习中要牢牢掌握四个公理和八个定理及其应用,重点掌握好平行关系和垂直关系的证明方法;3. 空间向量与立体几何:由于有平面向量的基础,空间向量部分重点掌握好空间向量基本定理和共面向量定理,在此基础上把复习的重心放在如何把立体几何问题转化为空间向量问题的方法,并注重运算能力的训练。
二、难点疑点1. 空间几何体的表面积和体积的计算方法;2. 平行关系和垂直关系的判定和性质,掌握好平行和垂直关系的证明方法;3. 空间向量的应用,将立体几何问题转化为空间向量问题的方法。
三、经典练习回顾1. 一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为.2. 一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB⊥EF;②EF与MN是异面直线;③MN∥CD.其中正确的是.3. 下列命题中,正确命题的序号是.①若直线l上有无数个点不在平面α内,则l∥α;②若直线l与平面α平行,则l与平面α内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.4. 已知O是△ABC的外心,P是平面ABC外的一点,且PA=PB=PC,α是经过PO的任意一个平面,则α与平面ABC的关系是.5. 如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是.6. 如下图,已知正三棱柱ABCA1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为.四、例题精析题型一空间几何体的表面积和体积【例1】如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1.(1)求四面体ABCD的体积;(2)求二面角CABD的平面角的正切值.【解法一】(1)如图1,过D作DF⊥AC垂足为F,故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,设G为边CD的中点,则由AC=AD,知AG⊥CD,从而AG=AC2-CG2=22-122=152.由12AC·DF=12CD·AG得DF=AG·CDAC=154.(图1)由Rt△ABC中AB=AC2-BC2=3,S△ABC=12AB·BC=32.故四面体ABCD的体积V=13·S△ABC·DF=58.(2)如图1,过F作FE⊥AB,垂足为E,连接DE.由(1)知DF⊥平面ABC,所以DE⊥AB,故∠DEF为二面角CABD的平面角.在Rt△AFD中,AF=AD2-DF2=22-1542=74,在Rt△ABC中,EF∥BC,从而EF∶BC=AF∶AC,所以EF=AF·BCAC=78.在Rt△DEF中,tan ∠DEF=DFEF=2157.【解法二】(1)如图2,设O是AC的中点,过O作OH⊥AC,交AB于H,过O作OM⊥AC,交AD于M,由平面ABC⊥平面ACD,知OH⊥OM.因此以O为原点,以射线OH,OC,OM分别为x轴,y轴,z轴的正半轴,可建立空间坐标系Oxyz.已知AC=2,故点A,C的坐标分别为A(0,-1,0),C(0,1,0).设点B的坐标为B(x1,y1,0)由AB⊥BC,|BC|=1,有x21+y21=1,x21+(y1-1)2=1,解得x1=32,y1=12,x1=-32,y1=12(舍去).(图2)即点B的坐标为B32,12,0. 又设点D的坐标为D(0,y2,z2),由|CD|=-1,|AD|=2,有(y2-1)2+z22=1,(y2+1)2+z22=4,解得y2=34,z2=154,y2=34,z2=-154(舍去).即点D的坐标为D0,34,154.从而△ACD边AC上的高为h=|z2|=154.又|AB|=322+12+12=3,|BC|=1.故四面体ABCD的体积V=13×12·|AB|·|BC|h=58.(2)由(1)知AB=32,32,0,AD=0,74,154.设非零向量n=(l,m,n)是平面ABD的法向量,则由n⊥AB有 32l+32m=0. ①由n⊥AD,有74m+154n=0.②取m=-1,由①,②,可得l=3,n=71515,即n=3,-1,71515.显然向量k=(0,0,1)是平面ABC的法向量,从而cos〈n,k〉=715153+1+4915=7109109,故tan〈n,k〉=1-491097109=2157,即二面角CABD的平面角的正切值为2157.点拨理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们的侧面展开图,及其对计算侧面积的作用,会根据条件计算表面积和体积。
理解球的表面积和体积的计算方法。
把握平面图形与立体图形间的相互转化方法,并能综合运用立体几何中所学知识解决有关问题。
题型二点、线、面的位置关系【例2】如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且CFCB=CGCD=23,则()(A) EF与GH互相平行(B) EF与GH异面(C) EF与GH的交点M可能在直线AC上,也可能不在直线AC上(D) EF与GH的交点M一定在直线AC上解依题意,可得EH∥BD,FG∥BD,故EH∥FG,由公理2可知,E、F、G、H共面,因为EH=12BD,FGBD=23,故EH≠FG,所以,EFGH是梯形,EF与GH必相交,设交点为M,因为点M在EF上,故点M在平面ACB上,同理,点M在平面ACD上,即点M是平面ACB与平面ACD的交点,而AC是这两个平面的交线,由公理3可知,点M一定在平面ACB与平面ACD的交线AC上.选(D).点拨理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。
题型二直线与平面、平面与平面平行的判定与性质【例2】如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1分别是棱AD、AA1的中点.(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;(2)证明:平面D1AC⊥平面BB1C1C.证明:(1)在直四棱柱ABCDA1B1C1D1中,取A1B1的中点F1,连接A1D,C1F1,CF1,因为AB=4,CD=2,且AB∥CD,所以CD瘙綊 A1F1,A1F1CD为平行四边形,所以CF1∥A1D,又因为E、E1分别是棱AD、AA1的中点,所以EE1∥A1D,所以CF1∥EE1,又因为平面FCC1,平面FCC1,所以直线EE1∥平面FCC1.(2)连接AC,在直棱柱中,CC1⊥平面ABCD,平面ABCD,所以CC1⊥AC,因为底面ABCD为等腰梯形,AB=4,BC=2,F是棱AB的中点,所以CF=CB=BF,△BCF为正三角形,∠BCF=60°,△ACF为等腰三角形,且∠ACF=30°,所以AC⊥BC,又因为BC与CC1都在平面BB1C1C内且交于点C,所以AC⊥平面BB1C1C,而平面D1AC,所以平面D1AC⊥平面BB1C1C.点拨掌握直线与平面平行、平面与平面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题。
通过线面平行、面面平行的证明,培养学生空间观念及观察、操作、实验、探索、合情推理的能力。
题型三直线与平面、平面与平面垂直的判定与性质【例3】如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.解(1)因为E、F分别是AP、AD的中点,∴EF∥PD,又∵P、D∈面PCD,E、面PCD∴直线EF∥平面PCD.(2)∵AB=AD,∠BAD=60°,F是AD的中点,∴BF⊥AD,又平面PAD⊥平面ABCD,面PAD∩面ABCD=AD,∴BF⊥面PAD,所以平面BEF⊥平面PAD.点拨掌握直线与平面垂直、平面与平面垂直的判定与性质定理,能用判定定理证明线线垂直、线面垂直、面面垂直,会用性质定理解决线面垂直、面面垂直的问题。
题型四运用空间向量解决空间中的夹角与距离【例4】如图所示,已知长方体ABCDA1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.(1)求CE的长;(2)求证:A1C⊥平面BED;(3)求A1B与平面BDE所成角的正弦值.(1)解如图所示,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系Dxyz.∴D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4).设E点坐标为(0,2,t),则BE=(-2,0,t),B1C=(-2,0,-4).∵BE⊥B1C,∴BE·B1C=4+0-4t=0.∴t=1,故CE=1.(2)由(1)得,E(0,2,1),BE=(-2,0,1),又A1C=(-2,2,-4),DB=(2,2,0),∴A1C·BE=4+0-4=0,且A1C·DB=-4+4+0=0.∴A1C⊥DB且A1C⊥BE,即A1C⊥DB,A1C⊥BE,又∵DB∩BE=B,∴A1C⊥平面BDE.即A1C⊥平面BED.(3)解由(2)知A1C=(-2,2,-4)是平面BDE的一个法向量.又A1B=(0,2,-4),∴cos〈A1C,A1B〉=A1C·A1B|A1C||A1B|=306.∴A1B与平面BDE所成角的正弦值为306.点拨利用向量求角:(1)异面直线所成角:向量a和b的夹角〈a,b〉(或者说其补角)等于异面直线a和b的夹角.cos〈a,b〉=a·b|a|·|b|;(2)直线和平面所成的角:与平面的斜线共线的向量a和这个平面的一个法向量n的夹角〈a,n〉(或者说其补角)是这条斜线与该平面夹角的余角;(3)求二面角的大小。