2021年西藏中考数学考前最后一卷解析版
- 格式:docx
- 大小:306.00 KB
- 文档页数:14
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π2.下列运算正确的是( ) A .(a ﹣3)2=a 2﹣9B .(12)﹣1=2 C .x+y=xy D .x 6÷x 2=x 33.下列计算正确的是( ) A .B .C .D .4.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是( )A .B .C .D .5.下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形; (3)在同圆中,相等的圆心角所对的弧相等; (4)三角形的内心到该三角形三个顶点距离相等; A .1个 B .2个 C .3个 D .4个6.郑州地铁Ⅰ号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A .13B .14C .15D .167.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )A .B .C .D .8.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .19.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论: ①∠CAD=30°②BD=7③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =312,正确的个数是( )A .2B .3C .4D .5二、填空题(本大题共6个小题,每小题3分,共18分)11.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.12.如图,直线a ∥b ,∠BAC 的顶点A 在直线a 上,且∠BAC =100°.若∠1=34°,则∠2=_____°.13.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为_____.14.已知抛物线23y x mx =--与直线25y x m =-在22x -<之间有且只有一个公共点,则m 的取值范围是__.15.如图,已知 OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是_________.16.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n 步的走法是:当n 被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____ 三、解答题(共8题,共72分)17.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.19.(8分)关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k的取值范围.20.(8分)计算:(-1)-1-27+012⎛⎫- ⎪⎝⎭+|1-33|21.(8分)反比例函数y=kx(k≠0)与一次函数y=mx+b (m≠0)交于点A (1,2k ﹣1).求反比例函数的解析式;若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.22.(10分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20my m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -.求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.23.(12分)如图,AB 是⊙O 的直径,CD 切⊙O 于点D ,且BD ∥OC ,连接AC . (1)求证:AC 是⊙O 的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)24.某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图; (3)请估计该市中小学生一天中阳光体育运动的平均时间.参考答案一、选择题(共10小题,每小题3分,共30分) 1、D 【解析】如图,连接OD .根据折叠的性质、圆的性质推知△ODB 是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式180n rl π= 来求AD 的长 【详解】解:如图,连接OD . 解:如图,连接OD .根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB-∠DOB=50°,∴AD的长为5018180π⨯=5π.故选D.【点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.2、B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;B. (12)﹣1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6÷x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.3、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.4、D【解析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【详解】由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.故选: D.【点睛】本题主要考查函数模型及其应用.5、C【解析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.6、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为525=15,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7、D【解析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.8、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.9、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.10、D【解析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=12AB=12,OE∥AB,根据勾股定理计算2=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=12,12POEAOPSS=,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC , ∴∠EAC=∠ACE ,∵∠AEB=∠EAC+∠ACE=60°, ∴∠ACE=30°, ∵AD ∥BC ,∴∠CAD=∠ACE=30°, 故①正确;②∵BE=EC ,OA=OC , ∴OE=12AB=12,OE ∥AB , ∴∠EOC=∠BAC=60°+30°=90°,Rt △EOC 中,=∵四边形ABCD 是平行四边形, ∴∠BCD=∠BAD=120°, ∴∠ACB=30°, ∴∠ACD=90°,Rt △OCD 中,=,∴,故②正确; ③由②知:∠BAC=90°, ∴S ▱ABCD =AB•AC , 故③正确;④由②知:OE 是△ABC 的中位线,又AB=12BC ,BC=AD , ∴OE=12AB=14AD ,故④正确;⑤∵四边形ABCD 是平行四边形,∴OA=OC=2,∴S △AOE =S △EOC =12OE•OC=12×12=,∵OE ∥AB , ∴12EP OE AP AB ==, ∴12POE AOP SS =, ∴S △AOP =23 S △AOE=23,故⑤正确; 本题正确的有:①②③④⑤,5个,故选D .【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE 是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、5310-⨯【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.005=5×10-1,故答案为:5×10-1. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12、46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a ∥b ,∴∠3=∠1=34°,∵∠BAC =100°,∴∠2=180°−34°−100°=46°,故答案为46°. 13、25【解析】试题解析:由题意10DB CD BC =+=11·1052522ABD S BD AB =⨯=⨯⨯=扇形 14、517m -<或83m =-. 【解析】联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m =-++-的图象在22x -<上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m 的取值范围;【详解】 联立2325y x mx y x m ⎧=--⎨=-⎩可得:2(2)530x m x m -++-=,令2(2)53y x m x m =-++-, ∴抛物线23y x mx =--与直线25y x m =-在22x -<之间有且只有一个公共点,即2(2)53y x m x m =-++-的图象在22x -<上与x 轴只有一个交点,当△0=时,即△2(2)4(53)0m m =+--= 解得:83m =± 当843m =+252322m x +==+> 当83m =-252m x +==- 当△0>时,∴令2x =-,75y m =+,令2x =,33y m =-,(75)(33)0m m ∴+-<, ∴517m -<< 令2x =-代入20(2)53x m x m =-++- 解得:57m =-, 此方程的另外一个根为:237-, 故57m =-也满足题意,故m 的取值范围为:517m -<或8m =-故答案为: 517m -<或8m =-【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.15【解析】由 OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,易得△OCP 是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE 的值,继而求得OP 的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM 的长.【详解】∵OP 平分∠AOB ,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°, ∴112CE CP ==,∴PE ==∴2OP PE ==∵PD ⊥OA ,点M 是OP 的中点,∴12DM OP ==【点睛】此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.16、(672,2019)【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,∵2018÷3=672…2,∴走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为672×3+3=2019, ∴棋子所处位置的坐标是(672,2019).故答案为:(672,2019).点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.三、解答题(共8题,共72分)17、(1)3,补图详见解析;(2)712【解析】 (1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人), 则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712P =. 【点睛】 此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键18、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD ,由CD 是⊙O 切线,得到∠ODC=90°,根据AB 为⊙O 的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO ,根据等腰直角三角形的性质得到∠ADO=∠A ,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC ,根据相似三角形的性质得到,解方程即可得到结论.试题解析:(1)连接OD , ∵CD 是⊙O 切线, ∴∠ODC=90°, 即∠ODB+∠BDC=90°,∵AB 为⊙O 的直径, ∴∠ADB=90°, 即∠ODB+∠ADO=90°, ∴∠BDC=∠ADO ,∵OA=OD , ∴∠ADO=∠A , ∴∠BDC=∠A ;(2)∵CE ⊥AE , ∴∠E=∠ADB=90°, ∴DB ∥EC , ∴∠DCE=∠BDC , ∵∠BDC=∠A , ∴∠A=∠DCE , ∵∠E=∠E , ∴△AEC ∽△CED , ∴, ∴EC 2=DE•AE , ∴11=2(2+AD ), ∴AD=1.考点:(1)切线的性质;(2)相似三角形的判定与性质.19、(2)见解析;(2)k<2.【解析】(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x 1=2、x 2=k+2,根据方程有一根小于2,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】(2)证明:∵在方程()23220x k x k -+++=中,△=[-(k+3)]2-4×2×(2k+2)=k 2-2k+2=(k-2)2≥2, ∴方程总有两个实数根.(2) ∵x 2-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x 1=2,x 2=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k 的取值范围为k<2.【点睛】此题考查根的判别式,解题关键在于掌握运算公式.20、-1【解析】试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.试题解析:原式=-1-331331+=-1.21、(1)y=1x;(2)y=﹣1655x +或y=1677x + 【解析】 试题分析:(1)把A (1,2k-1)代入y=k x 即可求得结果; (2)根据三角形的面积等于3,求得点B 的坐标,代入一次函数y=mx+b 即可得到结果.试题解析:(1)把A (1,2k ﹣1)代入y=k x 得, 2k ﹣1=k ,∴k=1,∴反比例函数的解析式为:y=1x ; (2)由(1)得k=1,∴A (1,1),设B (a ,0),∴S △AOB =12•|a|×1=3, ∴a=±6,∴B (﹣6,0)或(6,0),把A (1,1),B (﹣6,0)代入y=mx+b 得: 106m b m b =+⎧⎨=-+⎩, ∴1767m b ⎧=⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为:y=17x+67, 把A (1,1),B (6,0)代入y=mx+b 得:106m b m b=+⎧⎨=+⎩, ∴1565m b ⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为:y=﹣1655x +. 所以符合条件的一次函数解析式为:y=﹣1655x +或y=17x+67. 22、 (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解析】(1)把点A 坐标代入()m y m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可.【详解】(1)把()A 3,1代入()m y m 0x=≠得m 3=. ∴反比例函数的表达式为3y x = 把()A 3,1和()B 0,2-代入y kx b =+得132k b b=+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.23、(1)证明见解析;(2)23π- 【解析】(1)连接OD ,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD ,∠COD=∠ODB ,又因为OB=OD ,所以∠OBD=∠ODB ,即∠AOC=∠COD ,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD ,Rt △ODC 与Rt △OAC 是含30°的直角三角形,从而得到∠DOB=60°,即△BOD 为等边三角形,再用扇形的面积减去△BOD 的面积即可.【详解】(1)证明:连接OD ,∵CD 与圆O 相切,∴OD ⊥CD ,∴∠CDO=90°,∵BD ∥OC ,∴∠AOC=∠OBD ,∠COD=∠ODB ,∵OB=OD ,∴∠OBD=∠ODB ,∴∠AOC=∠COD ,在△AOC 和△DOC 中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切;(2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积, =26021223336023ππ⨯-⨯=-. 【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.24、(4)500;(4)440,作图见试题解析;(4)4.4.【解析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可.【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,∴本次调查共抽样了500名学生;(4)4.5小时的人数为:500×4.4=440(人),如图所示:(4)根据题意得:1000.5200120 1.580210020012080⨯+⨯+⨯+⨯+++=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.。
第 1 页 共 15 页 2021年西藏中考数学押题试卷
一.选择题(共12小题,满分36分)
1.(3分)计算30+(﹣20)的结果等于( )
A .10
B .﹣10
C .50
D .﹣50
【解答】解:30+(﹣20)=+(30﹣20)=10.
故选:A .
2.(3分)如图所示几何体的左视图正确的是( )
A .
B .
C .
D .
【解答】解:从几何体的左面看所得到的图形是:
故选:A .
3.4月24日,以“弘扬航天精神 拥抱星辰大海”为主题的2020年“中国航天日”系列活
动依托网络平台举办,来自多国多地区累计超过40000000人次收看了线上启动仪式,数据40000000用科学记数法表示为( )
A .40×106
B .4×108
C .0.4×107
D .4×107
【解答】解:数据40000000用科学记数法表示为4×107.
故选:D .
4.(3分)下列多项式能用公式法分解因式的有( )
(1)x 2﹣2x ﹣1;(2)
x 24−x +1;(3)﹣a 2﹣b 2;(4)﹣a 2+b 2;(5)x 2﹣4xy +4y 2;(6)
m 2﹣m +1.
A .1 个
B .2 个
C .3 个
D .4 个 【解答】解:(1)x 2﹣2x ﹣1,不符合题意;
(2)x 24−x +1=(x 2
−1)2,符合题意;。
西藏2021年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确选项 (共8题;共16分)1. (2分)(2016·济南) 5的相反数是()A .B . 5C . ﹣D . ﹣52. (2分)右图是由几个相同的小正方体搭成的一个几何体,从左边看得到的平面图形是()A .B .C .D .3. (2分)(2012·福州) 今年参观“5.18”海交会的总人数约为489000人,将489000用科学记数法表示为()A . 48.9×104B . 4.89×105C . 4.89×104D . 0.489×1064. (2分)(2020·中山模拟) 下列运算正确的是()A .B .C .D .5. (2分)(2019·海门模拟) 下面的四个图形是天气预报使用的图标,从左到右分别代表“阴”、“扬沙”、“浮尘”和“霾”,从中任取一个图标,既是轴对称图形又是中心对称图形的概率是()A .B .C .D . 16. (2分)如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A . 12B .C .D .7. (2分)(2017·龙华模拟) 已知函数y=ax2+bx+c(a≠0)的图象与函数y=x﹣的图象如图所示,则下列结论:①ab>0;②c>﹣;③a+b+c<﹣;④方程ax2+(b﹣1)x+c+ =0有两个不相等的实数根.其中正确的有()A . 4 个B . 3 个C . 2 个D . 1 个8. (2分)在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A . 甲的速度随时间的增加而增大B . 乙的平均速度比甲的平均速度大C . 在起跑后第180秒时,两人相遇D . 在起跑后第50秒时,乙在甲的前面二、填空题(每小题3分,共24分) (共8题;共10分)9. (3分) (2016八上·芦溪期中) ﹣的相反数是________,倒数是________,绝对值是________.10. (1分)(2018·盐城) 将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.11. (1分) (2019七下·杭锦旗期中) 在平面直角坐标系中,将点P(﹣1,5)向左平移2个单位长度后得到点P的坐标是________.12. (1分)(2017·泰兴模拟) 用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径________.13. (1分) (2017九上·青龙期末) 老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S甲2=51、S乙2=12.则成绩比较稳定的是________(填“甲”、“乙”中的一个).14. (1分)(2018·娄底模拟) 甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设米,根据题意可列出方程:________.15. (1分) (2020九上·镇海期末) 如图,一块含30°的直角三角板ABC(∠BAC=30°)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54°,则∠BCD的度数为________度.16. (1分)(2020·滨湖模拟) 如图,已知⊙O的半径为3cm,点A、B、C把⊙O三等分,分别以OA、OB、OC 为直径作圆,则图中阴影部分的面积为________.三、解答题(17、18、19小题各8分,共24分) (共10题;共92分)17. (5分)先化简,再求值:﹣﹣,其中m=4﹣.18. (5分) (2019八上·朝阳期中) 在△ABC的边AC上取一点,使得AB=AD,若点D恰好在BC的垂直平分线上,写出∠ABC与∠C的数量关系,并证明.19. (5分)(2018·福建模拟) 如图,已知△ABC中,∠C=90°.在BC上求作点D,使AD=BD.当AC=4,CD=3时,求AB的长,(要求尺规作图,保留作图痕迹,不必写作法)20. (5分)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=60°,∠BEQ=45°;在点F处测得∠AFP=45°,∠BFQ=90°,EF=2km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果保留根号).21. (9分)某中学号召学生利用假期开展社会实践活动,开学初学校随机地通过问卷形式进行了调查,其中将学生参加社会实践活动的天数,绘制了下列两幅不完整的统计图:请根据图中提供的信息,完成下列问题(填入结果和补全图形):(1)问卷调查的学生总数为________ 人(2)扇形统计图中a的值为________(3)补全条形统计图(4)该校共有1500人,请你估计“活动时间不少于5天”的大约有________ 人(5)如果从全校1500名学生中任意抽取一位学生准备作交流发言,则被抽到的学生,恰好也参加了问卷调查的概率是________22. (13分)(2017·仪征模拟) 为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩(分)363738394041424344454647484950人数123367581591112864成绩分组频数频率35≤x<3830.0338≤x<41a0.1241≤x<44200.2044≤x<47350.3547≤x≤5030b请根据所提供的信息解答下列问题:(1)样本的中位数是________分;(2)频率统计表中a=________,b=________;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?23. (10分) (2019九上·闽侯期中) 如图,是的直径,点在上,的平分线交于点,交于点.过点作的切线交的延长线于点,连接,.(1)求证:,;(2)过点分别作直线,垂线,垂足为,.若,,请你完成示意图并求线段的长.24. (10分)(2018·毕节) 某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?25. (15分) (2018九上·江苏期中) 如图,在平面直角坐标系xOy中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(4,4),反比例函数的图象经过线段BC的中点D,交正方形OABC的另一边AB于点E.(1)求k的值;(2)如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;(3)如图②,若点Q(x,y)在该反比例函数图象上运动(不与D重合),过点Q作QM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数关系式,并写出x的取值范围.26. (15分) (2019九上·宜春月考) 定义:如图,抛物线与轴交于两点,点在抛物线上(点与两点不重合),如果的三边满足,则称点为抛物线的勾股点。
2023年西藏中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项最符合题目要求,不选、错选或多选均不得分.1.7的相反数是()A .17B .17-C .7D .7-2.下列图形属于中心对称图形的是()A .B .C .D .3.2023年1月18日,国务院新闻办公室介绍了2022年知识产权相关工作情况,截至2022年底,我国发明专利有效量为421.2万件.将数据4212000用科学记数法表示为()A .70.421210⨯B .64.21210⨯C .54.21210⨯D .542.1210⨯4.不等式组2010x x -≤⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .5.下列计算正确的是()A .22223a b a b a b -=-B .3412a a a ⋅=C .()326326a b a b -=-D .222()a b a b +=+6.如图,已知a b ∥,点A 在直线a 上,点B ,C 在直线b 上,90BAC ∠=︒,130∠=︒,则2∠的度数是()A .30︒B .45︒C .60︒D .75︒7.已知一元二次方程2320x x -+=的两个根为1x 、2x ,则1211x x +的值为()A .-3B .23-C .1D .328.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点.若65DCE ∠=︒,则BOD ∠的度数是()A .65︒B .115︒C .130︒D .140︒9.已知a ,b 都是实数,若()2210a b ++-=,则()2023a b +的值是()A .2023-B .1-C .1D .202310.如图,两张宽为3的长方形纸条叠放在一起,已知60ABC ∠=︒,则阴影部分的面积是()A .92B.C.2D.11.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度12.如图,矩形ABCD 中,AC 和BD 相交于点O ,3AD =,4AB =,点E 是CD 边上一点,过点E 作EH BD ⊥于点H ,EG AC ⊥于点G ,则EH EG +的值是()A .2.4B .2.5C .3D .4二、填空题:本大题共6小题,每小题3分,共18分.请在每小题的空格中填上正确答案,错填、不填均不得分.13.请任意写出一个你喜欢的无理数:.14.在函数y=1x 5-中,自变量x 的取值范围是.15.分解因式:236x -=.16.如图,在ABC V 中,90A ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段5AE =,12AC =,则BE 长为.17.圆锥的底面半径是3cm ,母线长10cm ,则它的侧面展开图的圆心角的度数为.18.按一定规律排列的单项式:5a ,28a ,311a ,414a ,⋯.则按此规律排列的第n 个单项式为.(用含有n 的代数式表示)三、解答题:本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤.19.计算:212sin 451)2-⎛⎫+︒-- ⎪⎝⎭.20.解分式方程:3111x x x -=+-.21.如图,已知AB DE =,AC DC =,CE CB =.求证:12∠=∠.22.某校为了改善学生伙食状况,更好满足校园内不同民族学生的饮食需求,充分体现对不同民族学生饮食习惯的尊重,进行了一次随机抽样调查,调查了各民族学生的人数,绘制了两幅不完整的统计图,如图.请根据图中给出的信息,回答下列问题:(1)调查的样本容量为______,并把条形统计图补充完整;(2)珞巴族所在扇形圆心角的度数为______;(3)学校为了举办饮食文化节,从调查的四个民族的学生中各选出一名学生,再从选出的四名学生中随机选拔两名主持人,请用列表或画树状图的方法求出两名主持人中有一名是藏族学生的概率.23.列方程(组)解应用题:如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.(1)求一块长方形墙砖的长和宽;(2)求电视背景墙的面积.24.如图,一次函数2y x =+与反比例函数ay x=的图象相交于A ,B 两点,且点A 的坐标为()1,m ,点B 的坐标为(),1n -.(1)求,m n 的值和反比例函数的解析式;(2)点A 关于原点O 的对称点为A ',在x 轴上找一点P ,使PA PB '+最小,求出点P 的坐标.25.如图,轮船甲和轮船乙同时离开海港O ,轮船甲沿北偏东60︒的方向航行,轮船乙沿东南方向航行,2小时后,轮船甲到达A 处,轮船乙到达B 处,此时轮船甲正好在轮船乙的正北方向.已知轮船甲的速度为每小时25海里,求轮船乙的速度.(结果保留根号)26.如图,已知AB 为O 的直径,点C 为圆上一点,AD 垂直于过点C 的直线,交O 于点E ,垂足为点D ,AC 平分BAD ∠.(1)求证:CD 是O 的切线;(2)若8AC =,6BC =,求DE 的长.27.在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求抛物线的解析式;为等腰三角形,请直接写出点D的坐标;(2)如图甲,在y轴上找一点D,使ACD(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.1.D【分析】本题考查相反数,关键是掌握相反数的定义.只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:7的相反数是7-.故选:D .2.C【分析】根据中心对称图形的定义:“在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与原图形重合,那么这个图形称为中心对称图形”,逐项判断即可得.【详解】解:选项A 、B 、D 的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C 的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C .【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.B【分析】科学记数法的表现形式为10n a ⨯的形式,其中≤<110a ,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,由此进行求解即可得到答案.【详解】解:64212000 4.21210⨯=故选:B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.C【分析】先求出不等式组的解集,再在数轴上表示即可作答.【详解】2010x x -≤⎧⎨+>⎩①②,解不等式①,得:2x ≤;解不等式②,得:1x >-;即不等式组的解集为:12x -<≤,在数轴上表示为:故选:C .【点睛】本题主要考查了求解不等式组的解集并在数轴上表示解集的知识,注意,含端点时用实心点,不含端点时,用空心点.5.A【分析】根据整式的减法、积的乘方、同底数幂的乘法以及完全平方公式逐项计算即可作答.【详解】A 项,22223a b a b a b -=-,计算正确,故本项符合题意;B 项,347a a a ⋅=,原计算错误,故本项不符合题意;C 项,()326328a b a b -=-,原计算错误,故本项不符合题意;D 项,222()2a b a ab b +=++,原计算错误,故本项不符合题意;故选:A .【点睛】本题主要考查了整式的减法、积的乘方、同底数幂的乘法以及完全平方公式,掌握相应的运算法则及完全平方公式,是解答本题的关键.6.C【分析】根据平行线的性质与三角形的内角和为180︒进行解题即可.【详解】解:∵a b ,130∠=︒,∴130ABC ∠=∠=︒,由题可知:90BAC ∠=︒,∴290ABC ∠+∠=︒,∴2903060∠=︒-︒=︒.故选:C .【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.7.D【分析】由根与系数的关系得出两根之和,两根之积,然后把要求的式子变形,代入求值即可.【详解】解:由一元二次方程根与系数的关系得,12123,2+==x x x x ,∴1211x x +211212x x x x x x =+1212x x x x +=32=,故选:D .【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.C【分析】根据邻补角互补求出DCB ∠的度数,再根据圆内接四边形对角互补求出BAD ∠的度数,最后根据圆周角定理即可求出BOD ∠的度数.【详解】解:∵65DCE ∠=︒,∴180********DCB DCE ∠=︒-∠=︒-︒=︒,∵四边形ABCD 内接于O ,∴180DC BAD B ∠+=∠︒,∴65BAD ∠=︒,∴2265130BOD BAD ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握这些定理和性质是解题的关键.9.B【分析】根据绝对值和偶次方的非负性可求解a ,b 的值,再代入计算可求解.【详解】解:∵()2210a b ++-=,()20|2|01a b +≥-≥,,∴2010a b +=,-=,解得21a b -=,=,∴()()2023202311a b +=-=-.故选:B .【点睛】此题考查了绝对值与偶次方非负性的应用,解题关键是利用非负性求出a 、b 的值.10.D【分析】首先过点B 作BE AD ⊥于点E ,BF CD ⊥于点F ,由题意可得四边形ABCD 是平行四边形,继而求得AB BC =的长,判定四边形ABCD 是菱形,则可求得答案.【详解】过点B 作BE AD ⊥于点E ,BF CD ⊥于点F ,根据题意得:AD BC ∥,AB CD ∥,3BE BF ==,∴四边形ABCD 是平行四边形,∵60ABC ADC ∠=∠=︒,∴30ABE CBF ∠=∠=︒,∴2AB AE =,2BC CF =,∵222AB AE BE =+,3BE =,∴AB =同理:BC =,∴AB BC =,∴四边形ABCD 是菱形,∴AD =∴ABCD S AD BE =⨯=菱形故选:D .【点睛】此题考查了平行四边形的判定与性质,菱形的判定与性质,勾股定理,含30︒角的直角三角形的性质等知识,解题关键在于掌握菱形判定定理和作辅助线.11.D【分析】先确定两个抛物线的顶点坐标,再利用点平移的规律确定抛物线平移的情况.【详解】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是只考虑平移后的顶点坐标,即可求出解析式;二是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式.12.A【分析】连接OE ,利用矩形的性质可得1122OC AC BD DO ===,1134344DOC ABCD S S ==⨯⨯=矩形△,5BD AC ====,即52OC =,再利用面积可得12DOE S DO EH =⋅△,12EOC S OC EG =⋅△,结合DOC DOE EOC S S S =+△△△,可得()12DOC S OC EH EG =⨯+△,问题随之得解.【详解】解:连接OE ,如图,∵四边形ABCD 是矩形,3AD =,4AB =,∴1122OC AC BD DO ===,3AD BC ==,4CD AB ==,90ABC ∠=︒,∴1134344DOC ABCD S S ==⨯⨯=矩形△,5BD AC ====,即52OC =,∵EH BD ⊥,EG AC ⊥,∴12DOE S DO EH =⋅△,12EOC S OC EG =⋅△,∵DO OC =,DOC DOE EOCS S S =+△△△∴()12DOC S OC EH EG =⨯+△.∴()15322EH EG ⨯⨯+=,∴12 2.45EH EG +==,故选:A .【点睛】本题主要考查了矩形的性质,勾股定理以及三角形的面积等知识,灵活利用面积得出()12DOC S OC EH EG =⨯+△,是解答本题的关键.13π等.点睛:无理数:无限不循环小数称之为无理数.无理数包括:1、无限不循环小数,2、开方开不尽的数,3、含有π的倍数的数等.14.x 5≠.【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 5-在实数范围内有意义,必须x 50x 5-≠⇒≠.15.()()66x x +-##()()66x x -+【分析】本题主要考查了分解因式,直接利用平方差公式分解因式即可得到答案.【详解】解;()()23666x x x -=+-,故答案为:()()66x x +-.16.13【分析】根据作图可知:MN 是线段BC 的垂直平分线,即有BE CE =,再在Rt AEC △中,13EC ==,问题得解.【详解】连接CE ,如图,根据作图可知:MN 是线段BC 的垂直平分线,∴BE CE =,∵90A ∠=︒,5AE =,12AC =,∴在Rt AEC △中,13EC ==,∴13BE CE ==,故答案为:13.【点睛】本题考查了垂直平分线的尺规作图,垂直平分线的性质以及勾股定理等知识,得出MN 是线段BC 的垂直平分线,是解答本题的关键.17.108︒【分析】设圆锥的侧面展开图的圆心角为n ︒,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到1023180n ππ⨯⋅=,然后解关于n 的方程即可.【详解】解:设圆锥的侧面展开图的圆心角为n ︒,根据题意得1023180n ππ⨯⋅=解得108n =,即圆锥的侧面展开图的圆心角为108︒.故答案为:108︒.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.()32n n a +【分析】根据系数和字母的次数与单项式的序号关系写出即可.【详解】解:5a 系数为3125⨯+=,次数为1;28a 系数为3228⨯+=,次数为2;311a 系数为33211⨯+=,次数为3;414a 系数为34214⨯+=,次数为4;∴第n 个单项式的系数可表示为:32n +,字母a 的次数可表示为:n ,∴第n 个单项式为:()32nn a +.【点睛】本题考查数字变化类规律探究,掌握单项式的系数和次数并发现其变化规律是解题的关键.19【分析】根据负整数指数幂、零指数幂的运算法则,结合特殊角的三角函数值以及开立方的知识,计算即可作答.【详解】2012sin 451)2-⎛⎫+︒-- ⎪⎝⎭42132=+⨯-【点睛】本题主要考查了含特殊角的三角函数值的实数的混合运算,牢记特殊角的三角函数值,是解答本题的关键.20.12-【分析】方程两边同时乘以()()11x x +-,将分式方程化为整式方程,再求解即可.【详解】3111x x x -=+-()()()()()()3111111111x x x x x x x x x +--⨯+-=+-+-()()()()11131x x x x x --+-=+22133x x x x --+=+42x -=12x =-,经检验,12x =-是原方程的根,故原方程的解为:12x =-.【点睛】本题考查了求解分式方程的知识,掌握相应的求解方程,是解答本题的关键.注意:解分式方程时,要将所求的解代入原方程进行检验.21.见解析【分析】先由题意可证ABC DEC ≌△△,可得ACB DCE ∠=∠,再根据等式的性质即可得出结论.【详解】证明:在ABC V 和DEC 中,AB DE AC DC CB CE =⎧⎪=⎨⎪=⎩,()SSS ABC DEC ∴ ≌,ACB DCE ∴∠=∠,ACB ACE DCE ACE ∴∠-∠=∠-∠,12∴∠=∠.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.22.(1)100,图形见详解(2)25.2°(3)12【分析】(1)利用汉族学生人数除以其占比即可求出样本容量,再根据条形图中的人数可求出藏族学生人数,即可作答;(2)珞巴族学生人数除以总人数再乘以360︒即可作答;(3)采用列表法列举即可作答.【详解】(1)总人数:4242%100÷=(人),藏族学生人数:100427348---=(人),补充图形如下:(2)736025.2100⨯︒=︒,即珞巴族所在扇形圆心角的度数为25.2°;(3)设用“甲”代表藏族学生,用“乙”代表其他三族的学生,画出列表如下:甲乙乙乙甲甲,乙甲,乙甲,乙乙乙,甲乙,乙乙,乙乙乙,甲乙,乙乙,乙乙乙,甲乙,乙乙,乙由图表可知,总共有12种情况,含有“甲”(藏族学生)的情况有6种,故:两名主持人中有一名是藏族学生的概率16122÷=.【点睛】本题主要考查了条形统计图,扇形统计图以及采利用列举法求解概率的知识,正确作出列表,是解答本题的关键.23.(1)1.2m ,0.3m ;(2)23.6m .【分析】(1)首先设一块长方形墙砖的长为m x ,宽为m y ,然后用,x y 的代数式分别表示出长方形的两条长边分别为2m x ,()4m x y +,宽为()m x y +,进而根据长方形的性质列出方程组,解方程组即可得出答案;(2)根据长方形的面积计算公式即可得出答案.【详解】(1)解:设一块长方形墙砖的长为m x ,宽为m y .依题意得:241.5x x y x y =+⎧⎨+=⎩,解得:1.20.3x y =⎧⎨=⎩,答:一块长方形墙砖的长为1.2m ,宽为0.3m .(2)求电视背景墙的面积为:22 1.2 1.5 3.6m ⨯⨯=.答:电视背景墙的面积为23.6m .【点睛】此题主要考查了二元一次方程组的实际应用,长方形的性质,根据长方形的两组对边分别相等列出方程组是解答此题的关键.24.(1)m=3,n=-3,反比例函数的解析式为:3y x=;(2)()2.50-,;【分析】(1)将点()1,A m ,点(),1B n -分别代入2y x =+之中,即可求出,m n 的值;然后再将点()1,3代入a y x=即可得到反比例函数的解析;(2)作点B 关于x 轴的对称点B ',连接A B ''交x 轴于点P ,连接PB ,则PA PB '+为最小,故得点P 为所求作的点,根据对称性先求出点()13A '--,,点()31B '-,,再利用待定系数法求出直线A B ''的解析式为25y x =--,由此可求出点P 的坐标.【详解】(1)解:将点()1,A m ,点(),1B n -分别代入2y x =+之中,得:12m =+,12n -=+,解得:3m =,3n =-,∴点()1,3A ,点()3,1B --,将点()1,3A 代入之中,得:133a =⨯=,∴反比例函数的解析式为:3y x=,(2)作点B 关于x 轴的对称点B ',连接A B ''交x 轴于点P ,连接PB ,如图:则PA PB '+为最小,故得点P 为所求作的点.理由如下:在x 轴上任取一点M ,连接MB ,MB ',MA ',∵点B 关于x 轴的对称点B ',∴x 轴为线段BB '的垂直平分线,∴PB PB MB MB ''==,,∴MA MB MA MB '''+=+,PA PB PA PB A B '''''+=+=,根据“两点之间线段最短”得:A B MA MB ''''≤+,即:PA PB MA MB ''+≤+,∴PA PB '+为最小.∵点()1,3A ,点A 与点A '关于原点O 对称,∴点A '的坐标为()13--,,又∵点()3,1B --,点B 和点B '关于x 轴对称,∴点B '点的坐标为()31-,,设直线A B ''的解析式为:()0y kx b k =+≠,将点()13A '--,,()31B '-,代入y kx b =+,得:331k b k b -+=-⎧⎨-+=⎩,解得:25k b =-⎧⎨=-⎩,∴直线A'B'的解析式为:25y x =--,对于25y x =--,当0y =时, 2.5x =-,∴点P 的坐标为()2.50-,.【点睛】此题主要考查了一次函数与反比例函数的图象,利用轴对称求最短路线,熟练掌握待定系数法求函数的解析式,理解利用轴对称求最短路线的思路和方法是解答此题的关键.25海里/小时.【分析】过O 作OD AB ⊥于D ,解直角三角形即可得到结论.【详解】解:过O 作OD AB ⊥于D ,在Rt AOD 中,906030AOD ∠=︒-︒=︒,25250OA =⨯=(海里),cos3050OD OA ∴=⋅︒==,在Rt ODB △中,45DOB DBO ∠=∠=︒,OB ∴==,∴海里/小时.【点睛】本题考查了解直角三角形的应用-方向角问题,作出辅助线是解题的关键.26.(1)见详解(2)185【分析】(1)连接CO ,根据角平分线的定义有2BAD CAO ∠=∠,根据圆周角定理有2CAO COB ∠=∠,可得DAB COB ∠=∠,进而有AD OC ∥,进而可得18090DCO ADC ∠=︒-∠=︒,则有半径OC CD ⊥,问题得证;(2)连接CO ,CE ,BC ,利用勾股定理可得10AB ==,进而有3sin 5BC CAB AB ∠==,4tan 3AC CBA BC ∠==,根据DAC CAB ∠=∠,即3sin sin 5C C AB DA ∠==∠,进而可得24sin 5C DA D AC C ∠=⨯=,根据四边形AECB 内接于O ,可得DEC B ∠=∠,即4tan tan 3C C BA DE ∠==∠,再在Rt EDC 中,可得24318tan 545CD DE DEC ==⨯=∠.【详解】(1)连接CO ,如图,∵AC 平分BAD ∠,∴2BAD CAO ∠=∠,∵2CAO COB ∠=∠,∴DAB COB ∠=∠,∴AD OC ∥,∴180ADC DCO ∠+∠=︒,∵AD CD ⊥,∴90ADC ∠=︒,∴18090DCO ADC ∠=︒-∠=︒,∴OC CD ⊥,∴CD 是O 的切线;(2)连接CO ,CE ,BC ,如图,∵AB 为O 的直径,∴90ACB ∠=︒,∵8AC =,6BC =,∴在Rt ABC △中,10AB =,∴3sin 5BC CAB AB ∠==,4tan 3AC CBA BC ∠==,∵AC 平分BAD ∠,∴DAC CAB ∠=∠,即3sin sin 5C C AB DA ∠==∠,∵在Rt ADC 中,8AC =,∴24sin 5C DAD AC C ∠=⨯=,∵四边形AECB 内接于O ,∴DEC B ∠=∠,即4tan tan 3C C BA DE ∠==∠,∵在Rt EDC 中,245CD =,∴24318tan 545CD DE DEC ==⨯=∠.【点睛】本题主要考查了切线的判定,解直角三角形,圆内接四边形的性质以及圆周角定理等知识,灵活运用解直角三角形,是解答本题的关键.27.(1)223y x x =--+;(2)()00,或()03-,或(03-,或(03+,;(3)存在,(13P -,,(4Q -或(13P -,,(4Q -或()11P -,,()22Q -,或((23P Q -,,或((1,23P Q -,,【分析】(1)将()30A -,,()10B ,代入2y x bx c =-++,求出,b c ,即可得出答案;(2)分别以点D 为顶点、以点A 为顶点、当以点C 为顶点,计算即可;(3)抛物线223y x x =--+的对称轴为直线1x =-,设()1,P t -,(),Q m n ,求出218AC =,224AP t =+,22610PC t t =+-,分三种情况:以AP 为对角线或以AC 为对角线或以CP 为对角线.【详解】(1)解:(1)∵()30A -,,()10B ,两点在抛物线上,∴()2203301b c b c⎧=---+⎪⎨=-++⎪⎩解得,23b c =-⎧⎨=⎩,∴抛物线的解析式为:223y x x =--+;(2)令03x y ==,,∴()03C ,,由ACD 为等腰三角形,如图甲,当以点D 为顶点时,DA DC =,点D 与原点O 重合,∴()00D ,;当以点A 为顶点时,AC AD =,AO 是等腰ACD 中线,∴OC OD =,∴()03D -,;当以点C 为顶点时,AC CD ==∴点D 的纵坐标为3-或3,∴综上所述,点D 的坐标为()00,或()03-,或(03-,或(03+,.(3)存在,理由如下:抛物线223y x x =--+的对称轴为:直线1x =-,设()1,P t -,(),Q m n ,∵()()3003A C -,,,,则()2223318AC =-+=,()2222134AP t t =-++=+,()()222213610PC t t t =-+-=-+,∵以A C P Q 、、、为顶点的四边形是菱形,∴分三种情况:以AP 为对角线或以AC 为对角线或以CP 为对角线,当以AP 为对角线时,则CP CA =,如图1,∴261018t t -+=,解得:3t =∴(113P -,或(213P -,∵四边形ACPQ 是菱形,∴AP 与CQ 互相垂直平分,即AP 与CQ 的中点重合,当(113P -,时,∴0313032222m n +--++==,,解得:4,m n =-=∴(14Q -当(213P -,时,∴0313032222m n +--++==,,解得:4,m n =-∴(24Q -以AC 为对角线时,则PC AP =,如图2,∴226104t t t -+=+,解得:1t =,∴()311P -,,∵四边形APCQ 是菱形,∴AC 与PQ 互相垂直平分,即AC 与CQ 中点重合,∴1301032222m n --+++==,,解得:2,2m n =-=,∴()322Q -,;当以CP 为对角线时,则AP AC =,如图3,∴2418t +=,解得:t =∴((451,,P P --,∵四边形ACQP 是菱形,∴AQ 与CP 互相垂直平分,即AQ 与CP 的中点重合,∴,3010222m n -+-+=,解得:2,3m n ==±∴((45,,2323,Q Q ,综上所述,符合条件的点P 、Q 的坐标为:(13P -,,(4Q -或(13P -,,(4Q -或()11P -,,()22Q -,或((23P Q -,,或((1,23P Q -,,【点睛】本题是二次函数综合题,考查了解析式的求法、等腰三角形的判定、菱形的性质、坐标与图形的性质、分类讨论等知识,熟练掌握菱形的性质和坐标与图形的性质是解题的关键.。
2021年西藏日喀则市、林芝市中考数学第二次联考试卷1.下列各数中,负数是().A. −(−2)B. −|−2|C. (−2)2D. (−2)02.下列四个图形中,是中心对称图形的是()A. B. C. D.3.下列计算正确的是()A. x2+x3=x5B. x2⋅x3=x6C. x3÷x2=xD. (2x2)3=6x64.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°5.5月份的西藏空气清爽,景色宜人.“五一”小长假期间林芝地区某景点游客1万人次,景区门票价格旺季168元/人.以此计算,“五一”小长假期间此景区门票总收入用科学记数法表示为()A. 1.68×107元B. 0.618×107元C. 1.68×106元D. 168×104元6.某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A. 4,5B. 5,4C. 4,4D. 5,57.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A. 从正面看面积为4B. 从左面看面积为4C. 从上面看面积为3D. 从正面、左面、上面看面积都是48.在平面直角坐标系中,将点A(1,−2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A. (−1,1)B. (3,1)C. (4,−4)D. (4,0)9.若式子√2x−4在实数范围内有意义,则x的取值范围是()A. x≠2B. x≥2C. x≤2D. x≠−210.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A. 60°B. 50°C. 40°D. 20°11.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A. 3×2x+5=2xB. 3×20x+5=10x×2C. 3×20+x+5=20xD. 3×(20+x)+5=10x+212.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A. 1B. √2C. √3D. 213.分解因式:m2−25=______.14.如果单项式3x m y与−5x3y n是同类项,那么m+n=______.15.若扇形的圆心角为45°,半径为3,则该扇形的弧长为______.16.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积为77m2,设道路的宽为xm,则根据题意,可列方程为____.17. 如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(−4,0),点D 的坐标为(−1,4),反比例函数y =k x (x >0)的图象恰好经过点C ,则k 的值为______.18. 如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为______.19. 计算:(−1)2021+|1−√2|−2cos45°−(12)−1.20. 先化简,再求值:(1−1x+1)÷x 2x 2−1,其中x =2020.21.已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.22.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23.新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______名;(2)扇形统计图中表示A级的扇形圆心角α的度数是______,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为______;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.24.如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)25.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)求证:BC2=4CF⋅AC;(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.26.二次函数y=ax2+bx+2的图象交x轴于点(−1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=3时,求△DNB的面积;2(3)当t=5时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐4标.答案和解析1.【答案】B【解析】解:A、−(−2)=2,故此选项错误;B、−|−2|=−2,故此选项正确;C、(−2)2=4,故此选项错误;D、(−2)0=1,故此选项错误;故选:B.直接利用绝对值以及零指数幂的性质、相反数的性质分别化简得出答案.此题主要考查了绝对值以及零指数幂的性质、相反数的性质,正确化简各数是解题关键.2.【答案】C【解析】【分析】根据中心对称图形的概念对各图形分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,绕对称中心旋转180度后与原图形重合.【解答】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.3.【答案】C【解析】解:A、x2+x3不能合并,错误;B、x2⋅x3=x5,错误;C、x3÷x2=x,正确;D、(2x2)3=8x6,错误;故选:C.分别利用合并同类项法则以及同底数幂的除法运算法则和积的乘方运算法则等知识分别化简得出即可.此题主要考查了合并同类项法则以及同底数幂的除法运算法则和积的乘方运算法则等知识,正确掌握运算法则是解题关键.4.【答案】B【解析】解:∵AB//CD,∴∠FGB+∠GFD=180°,∴∠GFD=180°−∠FGB=26°,∵FG平分∠EFD,∴∠EFD=2∠GFD=52°,∵AB//CD,∴∠AEF=∠EFD=52°.故选:B.先根据平行线的性质,得到∠GFD的度数,再根据角平分线的定义求出∠EFD的度数,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等;两直线平行,同旁内角互补.5.【答案】C【解析】解:10000×168=1680000=1.68×106元.故选:C.科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】A【解析】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,这组数据的中位数为4;众数为5.故选:A.根据众数及中位数的定义,结合所给数据即可作出判断.本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义.7.【答案】A【解析】解:A.从正面看面积为4,此选项正确;B.从左面看面积为3,此选项错误;C.从上面看面积为4,此选项错误;D.由以上选项知此选项错误;故选:A.本题主要考查了从三个方向看几何体,根据从三个方向看几何体可逐一判断.8.【答案】A【解析】【分析】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵将点A(1,−2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,∴点B的横坐标为1−2=−1,纵坐标为−2+3=1,∴B的坐标为(−1,1).故选:A.9.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.10.【答案】B【解析】【分析】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.连接AD,先根据圆周角定理得出∠A及∠ADB的度数,再由直角三角形的性质即可得出结论.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°−40°=50°.故选:B.11.【答案】D【解析】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.直接利用表示十位数的方法进而得出等式即可.此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.12.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.13.【答案】(m+5)(m−5)【解析】【分析】此题主要考查了运用公式法分解因式,关键是掌握平方差公式:a2−b2=(a+b)(a−b).直接利用平方差公式进行分解即可.【解答】解:原式=(m+5)(m−5),故答案为(m+5)(m−5).14.【答案】4【解析】【分析】本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.根据同类项的定义(所含字母相同,相同字母的指数相同)求出m、n的值,再代入代数式计算即可.【解答】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为4.15.【答案】34π【解析】【分析】此题主要考查了弧长的计算,关键是掌握弧长公式.根据弧长公式l=nπr180,代入相应数值进行计算即可.【解答】解:根据弧长公式:l=45⋅π×3180=34π,故答案为:34π.16.【答案】(12−x)(8−x)=77【解析】【分析】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是解本题的关键.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:∵道路的宽应为x米,∴由题意得,(12−x)(8−x)=77,故答案为(12−x)(8−x)=77.17.【答案】16【解析】【分析】本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法.要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.【解答】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(−4,0),D(−1,4),∴DF=CE=4,OF=1,AF=OA−OF=3,在Rt△ADF中,AD=√32+42=5,∴OE=EF−OF=5−1=4,∴C(4,4)∴k=4×4=16故答案为16.18.【答案】57【解析】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.根据图形的变化规律即可得第⑦个图形中菱形的个数.本题考查了规律型−图形的变化类,解决本题的关键是观察图形的变化寻找规律.19.【答案】解:原式=−1+√2−1−2×√22−2 =−1+√2−1−√2−2=−4.【解析】先化简有理数的乘方,绝对值,负整数指数幂,代入特殊角三角函数值,然后再计算.本题考查实数的混合运算,理解a 0=1(a ≠0),a −p =1a p (a ≠0),熟记特殊角三角函数值是解题关键.20.【答案】解:(1−1x+1)÷x 2x 2−1 =x +1−1x +1⋅(x +1)(x −1)x 2 =x x +1⋅(x +1)(x −1)x 2 =x−1x ,当x =2020时,原式=2020−12020=20192020.【解析】先算括号内的减法,把除法变成乘法,算乘法,最后求出答案即可.本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.21.【答案】证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE ,∴∠CAB =∠EAD ,且AB =AD ,AC =AE ,∴△ABC≌△ADE(SAS),∴∠C =∠E .【解析】本题考查了全等三角形的判定和性质,证明∠CAB =∠EAD 是本题的关键. 由“SAS ”可证△ABC≌△ADE ,可得∠C =∠E .22.【答案】解:(1)设1辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人, {2x +3y =180x +2y =105, 解得:{x =45y =30, 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车a 辆,依题意有:{45a +30(6−a)≥240a ≤6, 解得:4≤a ≤6,因为a 取整数,所以a =4或5或6,当a =4时,租车费用为4×400+2×280=2160元;当a =5时,租车费用为5×400+1×280=2280元;当a =6时,租车费用为6×400=2400元;所以最节省费用的租车方案为租用甲种客车4辆,乙种客车2辆,最低费用为2160元.【解析】本题考查一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.(1)可设1辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,根据等量关系2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人,列出方程组求解即可;(2)根据题意列出不等式组,进而求解即可.23.【答案】解:(1)40;(2)54°;C 级人数为:40−6−12−8=14(人).补全条形统计图,如图所示:(3)75人(4)画树状图得:∵共有12种等可能的结果,选中小明的有6种情况,∴选中小明的概率为1.2【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(人);故答案为:40;×100%=15%,(2)∵A级的百分比为:640∴∠α=360°×15%=54°;故答案为:54°;补全条形统计图见答案;(3)500×15%=75(人).故估计优秀的人数为75人;故答案为:75人.(4)见答案.【分析】(1)由题意可得本次抽样测试的学生人数是:12÷30%=40(人),(2)首先可求得A级人数的百分比,继而求得∠α的度数,然后补全条形统计图;(3)根据A级人数的百分比,列出算式即可求得优秀的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果数与选中小明的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=DHtan37∘,在Rt△DBH中,∠DBH=45°,∴BH=DHtan45∘,∵BC=CH−BH,∴DHtan37∘−DHtan45∘=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=DHcos26∘≈20.答:轮船航行的距离AD约为20km.【解析】过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角定义.25.【答案】解:(1)如图所示,连接OD,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF =90°,∴直线DF 是⊙O 的切线;(2)连接AD ,则AD ⊥BC ,则AB =AC ,则DB =DC =12BC ,∵∠CDF +∠C =90°,∠C +∠DAC =90°,∴∠CDF =∠DCA ,而∠DFC =∠ADC =90°,∴△CFD∽△CDA ,∴CD 2=CF ⋅AC ,即BC 2=4CF ⋅AC ;(3)连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =12AE ×OEsin∠OEA =12×2×OE ×cos∠OEA ×OEsin∠OEA =4√3, S 阴影部分=S 扇形OAE −S △OAE =120°360∘×π×42−4√3=16π3−4√3.【解析】(1)如图所示,连接OD ,证明∠CDF +∠ODB =90°,即可求解;(2)证明△CFD∽△CDA ,则CD 2=CF ⋅AC ,即BC 2=4CF ⋅AC ;(3)S 阴影部分=S 扇形OAE −S △OAE 即可求解.本题为圆的综合题,涉及到解直角三角形、三角形相似、等腰三角形的性质等,难度不大.26.【答案】解:(1)将点(−1,0),B(4,0)代入y =ax 2+bx +2,∴a =−12,b =32, ∴y =−12x 2+32x +2;(2)C(0,2),∴BC 的直线解析式为y =−12x +2,当t =32时,AM =3,∵AB =5,∴MB =2,∴M(2,0),N(2,1),D(2,3),∴△DNB 的面积=△DMB 的面积−△MNB 的面积=12MB ×DM −12MB ×MN =12×2×2=2;(3)当t =54时,M(32,0),∴点Q 在抛物线对称轴x =32上,如图:过点A 作AC 的垂线,以M 为圆心AB 为直径构造圆,圆与x =32的交点分别为Q 1与Q 2,∵AB =5,∴AM =52,∵∠AQ 1C +∠OAC =90°,∠OAC +∠MAG =90°,∴∠AQ 1C =∠MAG ,,又∵∠AQ 1C =∠CGA =∠MAG ,∴Q 1(32,−52),∵Q 1与Q 2于x 轴对称,∴Q 232,52), ∴Q 点坐标分别为(32,−52),(32,52).【解析】(1)将点(−1,0),B(4,0)代入y =ax 2+bx +2即可;(2)由已知分别求出M(2,0),N(2,1),D(2,3),根据△DNB 的面积=△DMB 的面积−△MNB 的面积即可求解;(3)当t =54时,M(32,0),可知点Q 在抛物线对称轴直线x =32上;过点A 作AC 的垂线,以M 为圆心AB 为直径构造圆,圆与x 直线=32的交点分别为Q 1与Q 2,由AB =5,可得圆半径AM =52,即可求Q 点坐标分别为(32,−52),(32,52).本题是二次函数综合题,主要考查二次函数的图象及性质,“割补法”求三角形的面积,圆周角定理,等腰三角形的性质,用圆周角定理来处理∠AQC +∠OAC =90°是解题的关键.。
2023年中考考前最后一卷数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)........A .10x −≤<或1x ≥ C .1x ≤−或1x ≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6个小题,每小题3分,共18分,直接填写答案.)甲、乙两组数据的方差分别为22,s s 甲乙,则2s 甲______________2s 乙(填“>”,“<”或“=”).14.点()()1122,,,A x y B x y 在一次函数(2)1y a x =−+的图像上,当12x x >时,12y y <,则a的取值范围是____________.15.如图,ABC∆中,D为BC的中点,E是AD上一点,连接BE并延长交AC于F,BE AC=,且9BF=,6CF=,那么AF的长度为__.16.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数,等等.有如下四个结论:①(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;②当a=-2,b=1时,代数式a3+3a2b+3ab2+b3的值是-1;③当代数式a4+4a3b+6a2b2+4ab3+b4的值是0时,一定是a=-1,b=1;④(a+b)n的展开式中的各项系数之和为2n.上述结论中,正确的有______(写出序号即可).三、解答题(本大题共个8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)解不等式组211 3.x xx≥−⎧⎨+≤⎩,①②请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________请结合上述信息,解答下列问题:(1)共有名学生参与了本次问卷调查;“陶艺”在扇形统计图中所对应的圆心角是(2)补全调查结果条形统计图;(3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.20.(10分)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高α(1)求证:A ACF ∠=∠; (2)若8AC =,4cos 5ACF ∠=,求BF 及DE 22.(10分)某商店购进了一种消毒用品,进价为每件的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中数).当每件消毒用品售价为9元时,每天的销售量为11元时,每天的销售量为95件.于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是________,位置关系是_________;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作BEHF,M是BH中点,连BC=,求GM的最小值.接GM,3AB=,22023年中考考前最后一卷数学·参考答案第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)二、填空题(本大题共6小题,每小题3分,共18分)17.(6分)【详解】(1)解:移项得:21x x −≥− 解得:1x ≥−…………….. 1 分 故答案为:1x ≥−; (2)移项得:31x ≤−, 解得:2x ≤,…………….. 2 分 故答案为:2x ≤;(3)把不等式①和②的解集在数轴上表示出来:……………..4 分(4)所以原不等式组的解集为:12x −≤≤,……………..6 分 故答案为:12x −≤≤. 18. (6分) (4)(3)解:把“礼仪”“陶艺”“园艺”“厨艺”及“编程画树状图如下:共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有∴小刚和小强两人恰好选到同一门课程的概率为51255=. (6)20.(10分)【详解】(1)解:过点D作DE BC⊥,交BC的延长线于点E,在Rt ADF 中,3DF x =Rt ABC △中,【详解】(1)解:∵Rt ABC △中,90ACB ∠=︒, ∴∠A +∠B =∠ACF +∠BCF =90°, ∵BE CD =, ∴∠B =∠BCF ,∴∠A =∠ACF ; ……………..2 分 (2)∵∠B =∠BCF ,∠A =∠ACF22.(10分)【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+≠,根据题意得: 91051195k b k b +=⎧⎨+=⎩,解得:5150k b =−⎧⎨=⎩,∴y 与x 之间的函数关系式为5150y x =−+;……………..2 分(2)解:(-5x +150)(x -8)=425,整理得:2383450x x −+=,解得:1213,25x x ==,……………..4 分∵8≤x ≤15,∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;……………..6 分(3)解:根据题意得:()()()851508w y x x x =−=−+−251901200x x =−+−()2519605x =−−+……………..8 分∵8≤x ≤15,且x 为整数,当x <19时,w 随x 的增大而增大,∴当x =15时,w 有最大值,最大值为525.……………..10 分答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元. 23.(11分) 2212x x +=()43k ∴−∵x 1+x 2=4【详解】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;……………..2 分②成立,…………….. 3分理由是:当点E在线段BC的延长线上时,同理可得:△ABE≌△BCF(AAS),∴BE=CF,AE=BF,……………..4 分。
2021年西藏中考数学试卷一、选择题(本大题共12小题,共36.0分)1.−10的绝对值是()A. −110B. 110C. −10D. 102.2020年12月3日.中共中央政治局常务委员会召开会议,听取脱贫攻坚总结评估汇报.中共中央总书记习近平主持会议并发表重要讲话.指出经过8年持续奋斗,我们如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,消除了绝对贫困和区域性整体贫困,近1亿贫困人口实现脱贫,取得了令全世界刮目相看的重大胜利.将100000000用科学记数法表示为()A. 0.1×108B. 1×107C. 1×108D. 10×1083.如图是由五个相同的小正方体组成的几何体,其主视图为()A.B.C.D.4.数据3,4,6,6,5的中位数是()A. 4.5B. 5C. 5.5D. 65.下列计算正确的是()A. (a2b)3=a6b3B. a2+a=a3C. a3⋅a4=a12D. a6÷a3=a26.把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为()A. 15°B. 20°C. 25°D. 30°7.如图,在矩形ABCD中,对角线AC与BD相交于点O.点E、F分别是AB,AO的中点,且AC=8.则EF的长度为()A. 2B. 4C. 6D. 88.如图,△BCD内接于⊙O,∠D=70°,OA⊥BC交⨀O于点A,连接AC,则∠OAC的度数为()A. 40°B. 55°C. 70°D. 110°9.已知一元二次方程x2−10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为()A. 6B. 10C. 12D. 2410.将抛物线y=(x−1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为()A. y=x2−8x+22B. y=x2−8x+14C. y=x2+4x+10D. y=x2+4x+211.如图.在平面直角坐标系中,△AOB的面积为27,BA8垂直x轴于点A,OB与双曲线y=k相交于点C,且xBC:OC=1:2.则k的值为()A. −3B. −94C. 3D. 9212.如图,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,点P是线段AC上一动点,点M在线段AB上,当AB时,PB+PM的最小值为()AM=13A. 3√3B. 2√7C. 2√3+2D. 3√3+3二、填空题(本大题共6小题,共18.0分)13. 若√2x −1在实数范围内有意义,则x 的取值范围是______.14. 计算:(π−3)0+(−12)−2−4sin30°=______.15. 已知一个圆锥的底面圆半径是2,母线长是6.则圆锥侧面展开图的扇形圆心角度数是______.16. 若关于x 的分式方程2x x−1−1=m x−1无解,则m =______.17. 如图.在Rt △ABC 中,∠A =90°,AC =4.按以下步骤作图:(1)以点B 为圆心,适当长为半径画弧,分别交线段BA ,BC于点M ,N ;(2)以点C 为圆心,BM 长为半径画弧,交线段CB 于点D ;(3)以点D 为圆心,MN 长为半径画弧,与第2步中所面的弧相交于点E ;(4)过点E 画射线CE ,与AB 相交于点F.当AF =3时,BC 的长是______.18. 按一定规律排列的一列数依次为23,14,215,112,235,…,按此规律排列下去,这列数中的第n 个数是______.三、解答题(本大题共9小题,共66.0分)19. 解不等式组{2x +3>12x−13≤x 2,并把解集在数轴上表示出来.20.先化简,再求值:a2+2a+1a−2⋅a−2a2−1−(1a−1+1),其中a=10.21.如图,AB//DE,B,C,D三点在同一条直线上,∠A=90°,EC⊥BD,且AB=CD.求证:AC=CE.22.列方程(组)解应用题为振兴农村经济,某县决定购买A,B两种药材幼苗发给农民栽种,已知购买2棵A种药材幼苗和3棵B种药材幼苗共需41元.购买8棵A种药材幼苗和9棵B种药材幼苗共需137元.问每棵A种药材幼苗和每棵B种药材幼苗的价格分别是多少元?23.为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.(1)在抽取的200名学生中,选择“演讲比赛”的人数为______,在扇形统计图中,m的值为______.(2)根据本次调查结果,估计全校2000名学生中选择“文艺汇演”的学生大约有多少人?(3)现从喜爱“知识竞赛”的四名同学a、b、c、d中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a同学参加的概率.24.已知第一象限点P(x,y)在直线y=−x+5上,点A的坐标为(4,0),设△AOP的面积为S.(1)当点P的横坐标为2时,求△AOP的面积;(2)当S=4时,求点P的坐标;(3)求S关于x的函数解析式,写出x的取值范围,并在图中画出函数S的图象.25.如图,为了测量某建筑物CD的高度,在地面上取A,B两点,使A、B、D三点在同一条直线上,拉姆同学在点A处测得该建筑物顶部C的仰角为30°,小明同学在点B处测得该建筑物顶部C的仰角为45°,且AB=10m.求建筑物CD的高度.(拉姆和小明同学的身高忽略不计.结果精确到0.1m,√3≈1.732)26.如图,AB是⊙O的直径,OC是半径,延长OC至点D.连接AD,AC,BC.使∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若AD=4,tan∠CAD=1,求BC的长.227.在平面直角坐标系中,抛物线y=−x2+bx+c与x轴交于A,B两点.与y轴交于点C.且点A的坐标为(−1,0),点C的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时,求点P的坐标;(3)图(乙)中,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:−10的绝对值是10.故选:D.根据绝对值的定义即可得到结论.本题考查了绝对值的定义,熟记绝对值的定义是解题的关键.2.【答案】C【解析】解:100000000=1.0×108,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要定a的值以及n的值.3.【答案】C【解析】解:从正面看,底层是三个小正方形,上层的右边是两个小正方形.故选:C.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.【答案】B【解析】解:将这组数据从小到大排列为3,4,5,6,6,处在中间位置的一个数是5,因此中位数是5,故选:B.将这组数据从小到大排列,处在中间位置的一个数就是中位数.本题考查中位数,掌握将一组数据从小到大排列处在中间位置的一个数或两个数的平均数是中位数是正确解答的关键.5.【答案】A【解析】解:A.(a2b)3=a6b3,故本选项符合题意;B.a2与a不是同类项,所以不能合并,故本选项不合题意;C.a3⋅a4=a7,故本选项不合题意;D.a6÷a3=a3,故本选项不合题意;故选:A.分别根据积的乘方运算法则,合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可.(BD选项非试卷原题)本题考查了合并同类项,同底数幂的乘除法以及积的乘方,掌握相关运算法则是解答本题的关键.6.【答案】B【解析】解:如图,∵a//b,∴∠1=∠3=25°,∵∠2+∠3=45°,∴∠2=45°−∠3=20°,故选:B.利用平行线的性质求出∠3可得结论.本题考查平行线的性质,等腰直角三角形的性质等知识,解题的关键是利用平行线的性质求出∠3.【解析】解:∵四边形ABCD是矩形,BD,∴AC=BD=8,BO=DO=12BD=4,∴BO=DO=12∵点E、F是AO,AB的中点,∴EF是△AOD的中位线,BO=2,∴EF=12故选:A.BD=4,再根据三角形中位线定理可根据矩形的性质可得AC=BD=8,BO=DO=12BO=2.得EF=12此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.8.【答案】B【解析】解:连接OB,OC,∵∠D=70°,∴∠BOC=2∠D=140°,∵OA⊥BC,∠BOC=70°,∴∠COA=12∵OA=OC,∴∠OAC=∠OCA=1(180°−70°)=55°,2故选:B.连接OB,OC,根据圆周角定理得到∠BOC=2∠D=140°,根据垂径定理得到∠COA=1∠BOC=70°,根据等腰三角形的性质即可得到结论.2本题考查了三角形的外接圆与外心,垂径定理,等腰三角形性质,三角形的内角和定理,正确的作出辅助线是解题的关键.【解析】解:方程x2−10x+24=0,分解得:(x−4)(x−6)=0,可得x−4=0或x−6=0,解得:x=4或x=6,∴菱形两对角线长为4和6,则这个菱形的面积为12×4×6=12.故选:C.利用因式分解法求出已知方程的解确定出菱形两条对角线长,进而求出菱形面积即可.此题考查了解一元二次方程−因式分解法,以及菱形的性质,熟练掌握因式分解法是解本题的关键.10.【答案】D【解析】解:将抛物线y=(x−1)2+2向左平移3个单位长度所得抛物线解析式为:y=(x−1+3)2+2,即y=(x+2)2+2;再向下平移4个单位为:y=(x+2)2+2−4,即y=(x+2)2−2=x2+4x+2.故选:D.根据“左加右减,上加下减”的法则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.11.【答案】A【解析】解:过C作CD⊥x轴于D,∵BCOC =12,∴OCOB =23,∵BA⊥x轴,∴CD//AB,∴△DOC∽△AOB,∴S△DOCS△AOB =(OCOB)2=(23)2=49,∵S△AOB=278,∴S△DOC=49S△AOB=49×278=32,∵双曲线y=kx在第二象限,∴k=−2×32=−3,故选:A.过C作CD⊥x轴于D,可得△DOC∽△AOB,根据相似三角形的性质求出S△DOC,由反比例函数系数k的几何意义即可求得k.本题主要考查了反比例函数系数k的几何意义,相似三角形的性质和判定,根据相似三角形的性质和判定求出S△DOC是解决问题的关键.12.【答案】B【解析】解:作B点关于AC的对称点B′,连接B′M交AC于点P,∴BP=B′P,∴PB+PM=B′P+PM≥B′M,∴PB+PM的最小值为B′M的长,过点B′作B′H⊥AB交H点,∵∠A=30°,∠C=90°,∴∠CBA=60°,∵AB=6,∴BC=3,∴BB′=6,在Rt△BB′H中,B′H=B′B⋅sin60°=6×√32=3√3,HB=B′B⋅cos60°=6×12=3,∴AH=3,∵AM=13AB,∴AM=2,∴MH=1,在Rt△MHB′中,B′M=√B′H2+MH2=√(3√3)2+1=2√7,∴PB+PM的最小值为2√7,故选:B.作B点关于AC的对称点B′,连接B′M交AC于点P,则PB+PM的最小值为B′M的长,过点B′作B′H⊥AB交H点,在Rt△BB′H中,B′H=3√3,HB=3,可求MH=1,在Rt△MHB′中,B′M=2√7,所以PB+PM的最小值为2√7.本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活应用勾股定理是解题的关键.13.【答案】x≥12【解析】解:√2x−1在实数范围内有意义,则2x−1≥0,解得:x≥1.2.故答案为:x≥12直接利用二次根式被开方数是非负数,进而得出答案.此题主要考查了二次根式有意义的条件,正确掌握二次根式被开方数是非负数是解题关键.14.【答案】3【解析】解:原式=1+4−4×12=1+4−2=3.故答案为:3.直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质,正确化简各数是解题关键.15.【答案】120°【解析】解:设圆心角为n,底面半径是2,母线长是6,则底面周长=4π=nπ×6180,解得:n=120,故答案为:120°.利用圆锥侧面展开扇形圆心角与母线和底面圆半径的关系计算.本题考查了圆锥的计算,解决本题的关键是根据圆锥的底面周长得到扇形圆心角的表达式子.16.【答案】2【解析】解:2xx−1−1=mx−1,方程两边同时乘以x−1,得2x−(x−1)=m,去括号,得2x−x+1=m,移项、合并同类项,得x=m−1,∵方程无解,∴x=1,∴m−1=1,∴m=2,故答案为2.解方程得x=m−1,由方程无解,可知x=1,即可求m=2.本题考查分式方程的解,掌握分式方程的解法,理解无解的意义是解题的关键.17.【答案】4√5【解析】解:由作法得∠FCB=∠B,∴FC=FB,在Rt△ACF中,∵∠A=90°,AC=4,AF=3,∴CF=√32+42=5,∴BF=5,∴AB=AF+BF=8,在Rt△ABC中,BC=√AC2+AB2=√42+82=4√5.故答案为4√5.利用基本作图得到∠FCB=∠B,则FC=FB,再利用勾股定理计算出CF=5,则AB=8,然后利用勾股定理可计算出BC的长.本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.【答案】2(2n−1)(2n+1)(n是偶数),14(2n−1)(n是奇数)【解析】解:观察一列数可知:23=21×3,14=11×4,215=23×5,112=13×4,235=25×7,…,按此规律排列下去,这列数中的第n个数是:2(2n−1)(2n+1)(n是偶数),14(2n−1)(n是奇数),故答案为:2(2n−1)(2n+1)(n是偶数),14(2n−1)(n是奇数).观察一列数可得23=21×3,14=11×4,215=23×5,112=13×4,235=25×7,…,按此规律排列下去,即可得这列数中的第n个数.本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.19.【答案】解:解不等式2x+3>1,得:x>−1,解不等式2x−13≤x2,得:x≤2,则不等式组的解集为−1<x≤2,将不等式组的解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:a2+2a+1a−2⋅a−2a2−1−(1a−1+1)=(a+1)2a−2⋅a−2(a+1)(a−1)−1+a−1a−1=a+1a−1−aa−1=a+1−aa−1=1a−1,当a=10时,原式=110−1=19.【解析】根据分式的乘法和加减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式加减法和乘法的运算法则.21.【答案】证明:∵AB//DE,∴∠B=∠D,∵EC⊥BD,∠A=90°,∴∠DCE=90°=∠A,在△ABC和△CDE中,{∠B=∠DAB=CD∠A=∠DCE,∴△ABC≌△CDE(ASA),∴AC=CE.【解析】由平行线的性质得出∠B=∠D,再由垂直的定义得到∠DCE=90°=∠A,即可根据ASA证明△ABC≌△CDE,最后根据全等三角形的性质即可得解.此题考查了全等三角形的判定与性质,根据ASA证明△ABC≌△CDE是解题的关键.22.【答案】解:设每棵A 种药材幼苗的价格是x 元,每棵B 种药材幼苗的价格是y 元,依题意得:{2x +3y =418x +9y =137,解得:{x =7y =9.答:每棵A 种药材幼苗的价格是7元,每棵B 种药材幼苗的价格是9元.【解析】设每棵A 种药材幼苗的价格是x 元,每棵B 种药材幼苗的价格是y 元,根据“购买2棵A 种药材幼苗和3棵B 种药材幼苗共需41元.购买8棵A 种药材幼苗和9棵B 种药材幼苗共需137元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【答案】40人 30【解析】解:(1)在抽取的200名学生中,选择“演讲比赛”的人数为200×20%=40(人),则选择“书画展览”的人数为200−(40+80+20)=60(人), ∴在扇形统计图中,m%=60200×100%=30%,即m =30, 故答案为:40人,30;(2)估计全校2000名学生中选择“文艺汇演”的学生大约有2000×80200=800(人); (3)列表如下:由表可知,共有12种等可能结果,其中a 同学参加的有6种结果, 所以a 同学参加的概率为612=12.(1)总人数乘以A 对应的百分比即可求出其人数,再根据四种方案的人数之和等于总人数求出C 方案人数,再用C 方案人数除以总人数即可得出m 的值; (2)总人数乘以样本中B 方案人数所占比例;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.【答案】解:(1)把点P的横坐标为2代入得,y=−2+5=3,∴点P(2,3),×4×3=6;∴S△AOP=12×4×y=4,(2)当S=4时,即12∴y=2,当y=2时,即2=−x+5,解得x=3,∴点P(3,2);(3)由题意得,S=1OA⋅y=2y=2(−x+5)=−2x+10,2当y>0时,即0<x<5时,S=2(−x+5)=−2x+10,∴S关于x的函数解析式为S=−2x+10(0<x<5),画出的图象如图所示.【解析】(1)求出点P坐标,再根据三角形面积公式进行计算即可;(2)当S=4时求出点P的纵坐标,进而确定其横坐标;(3)根据三角形的面积计算方法以及一次函数关系式得出答案.本题考查待定系数法求一次函数关系式,一次函数图象上点的坐标特征,将坐标转化为线段的长,利用三角形的面积公式得出关系式是解决问题的关键.25.【答案】解:连接AC、BC,如图所示:由题意得:∠A=30°,∠DBC=45°,AB=10m,在Rt△BDC中,tan∠DBC=CDBD= tan45°=1,∴BD=CD,在Rt△ACD中,tan∠DAC=CDAD =tan30°=√33,∴AD=√3CD,∴AB=AD−BD=√3CD−CD=10(m),解得:CD=5√3+5≈13.7(m),答:建筑物CD的高度约为13.7m.【解析】连接AC、BC,由锐角三角函数定义求出BD=CD,AD=√3CD,再由AB= AD−BD,即可求解.本题考查了解直角三角形的应用−仰角俯角问题,熟练掌握锐角三角函数定义,求出BD=CD,AD=√3CD是解答本题的关键.26.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠CAD=∠B,∴∠CAD+∠BAC=90°,即∠BAD=90°,∴AD⊥OA,∴AD是⊙O的切线;(2)解:过点D作DM⊥AD交AC的延长线于点M,∵tan∠CAD=12=DMAD,AD=4,∴DM=2,∵OA=OC,∴∠OAC=∠OCA,∵AD⊥OA,DM⊥AD,∴OA//DM,∴∠M=∠OAC,∵∠OCA=∠DCM,∴∠DCM=∠M,∴DC=DM=2,在Rt△OAD中,OA2+AD2=OD2,即OA2+42=(OC+2)2=(OA+2)2,∴OA=3,∴AB=6,∵∠CAD=∠B,tan∠CAD=12,∴tanB=tan∠CAD=ACBC =12,∴BC=2AC,在Rt△ABC中,AB2=AC2+BC2,∴62=5AC2,∴AC=6√55,∴BC=12√55.【解析】(1)根据AB是⊙O的直径得出∠B+∠BAC=90°,等量代换得到∠CAD+∠BAC=90°,即∠BAD=90°,AD⊥OA,即可判定AD是⊙O的切线;(2)过点D作DM⊥AD交AC的延长线于点M,根据锐角三角函数定义求出DM=2,由等边对等角得出∠OAC=∠OCA,由平行线的性质得出∠M=∠OAC,再根据对顶角相等得出∠DCM=∠M,即得DC=DM=2,根据勾股定理求出OA=3,AB=6,最后根据勾股定理求解即可.此题考查了切线的判定与性质、解直角三角形,熟记切线的判定与性质及锐角三角函数定义时解题的关键.27.【答案】解:(1)将A 的坐标(−1,0),点C 的坐(0,5)代入y =−x 2+bx +c 得: {0=−1−b +c 5=c ,解得{b =4c =5, ∴抛物线的解析式为y =−x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =−x 2+4x +5中,令y =0得−x 2+4x +5=0,解得x =5或x =−1,∴B(5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =√2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B(5,0)代入得0=5k +5,∴k =−1,∴直线BC 解析式为y =−x +5,设P(m,−m 2+4m +5),(0<m <5),则Q(m,−m +5),∴PQ =(−m 2+4m +5)−(−m +5)=−m 2+5m =−(m −52)2+254,∵a =−1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P(52,354);(3)存在,理由如下:抛物线y=−x2+4x+5对称轴为直线x=2,设M(s,−s2+4s+5),N(2,t),而B(5,0),C(0,5),①以MN、BC为对角线,则MN、BC的中点重合,如图:∴{s+22=5+02−s2+4s+5+t2=0+52,解得{s=3t=−3,∴M(3,8),②以MB、NC为对角线,则MB、NC的中点重合,如图:∴{s+52=2+02−s2+4s+4+02=t+52,解得{s=−3t=−21,∴M(−3,−16),③以MC、NB为对角线,则MC、NB中点重合,如图:{s+02=2+52−s 2+4s+5+52=t+02,解得{s =7t =−11, ∴M(7,−16);综上所述,M 的坐标为:(3,8)或(−3,−16)或(7,−16).【解析】(1)将A 的坐标(−1,0),点C 的坐(0,5)代入y =−x 2+bx +c ,即可得抛物线的解析式为y =−x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =−x 2+4x +5可得B(5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =√2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B(5,0)代入得直线BC 解析式为y =−x +5,设P(m,−m 2+4m +5),(0<m <5),则Q(m,−m +5),PQ =−(m −52)2+254,故当m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P(52,354); (3)抛物线y =−x 2+4x +5对称轴为直线x =2,设M(s,−s 2+4s +5),N(2,t),而B(5,0),C(0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组{s+22=5+02−s 2+4s+5+t 2=0+52,即可解得M(3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得{s+52=2+02−s 2+4s+4+02=t+52,解得M(−3,−16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则{s+02=2+52−s 2+4s+5+52=t+02,解得M(7,−16).本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。
2021年西藏中考数学试卷一、选择题目:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分.1. ﹣10的绝对值是()A.110B. ﹣110C. 10D. ﹣10【答案】C【解析】【分析】任何一个数的绝对值均为非负数,0的绝对值为0,负数的绝对值为正数.【详解】因为-10为负数,故-10的绝对值为10,本题选C.【点睛】绝对值是指一个数在数轴上所对应点到原点的距离,本题主要考查绝对值的定义.2. 2020年12月3日.中共中央政治局常务委员会召开会议,听取脱贫攻坚总结评估汇报.中共中央总书记习近平主持会议并发表重要讲话.指出经过8年持续奋斗,我们如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,消除了绝对贫困和区域性整体贫困,近1亿贫困人口实现脱贫,取得了令全世界刮目相看的重大胜利.将100000000用科学记数法表示为()A. 0.1×108B. 1×107C. 1×108D. 10×108【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:100000000=1.0×108,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要定a的值以及n的值.3. 如图是由五个相同的小正方体组成的几何体,其主视图为()A. B. C. D.【答案】C【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,底层是三个小正方形,上层的右边是两个小正方形.故选:C.【点睛】此题考查三视图中主视图:在平面内由前向后观察物体得到的视图叫做主视图.4. 数据3,4,6,6,5的中位数是()A. 4.5B. 5C. 5.5D. 6【答案】B【解析】【分析】将这组数据从小到大排列,处在中间位置的一个数就是中位数.【详解】解:将这组数据从小到大排列为3,4,5,6,6,处在中间位置的一个数是5,因此中位数是5,故选:B.【点睛】此题考查数据中的中位数知识,注意从小到大排列是关键.5. 下列计算正确的是()A. (a2b)3=a6b3B. a2+a=a3C. a3•a4=a12D. a6÷a3=a2【答案】A【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可.【详解】解:A.(a2b)3=a6b3,故本选项符合题意;B.a2与a不是同类项,所以不能合并,故本选项不合题意;C.a3•a4=a7,故本选项不合题意;D.a6÷a3=a3,故本选项不合题意;故选:A.【点睛】本题主要考查了幂的运算,熟练掌握积的乘方运算法则,合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则是解题的关键.6. 把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为()A. 15°B. 20°C. 25°D. 30°【答案】B【解析】【分析】利用平行线的性质求出∠3可得结论.【详解】解:如图,∵a∥b,∴∠1=∠3=25°,∵∠2+∠3=45°,∴∠2=45°﹣∠3=20°,故选:B.【点睛】本题考查平行线的性质,等腰直角三角形的性质等知识,解题的关键是利用平行线的性质求出∠3.7. 如图,在矩形ABCD中,对角线AC与BD相交于点O.点E、F分别是AB,AO的中点,且AC=8,则EF的长度为()A. 2B. 4C. 6D. 8【答案】A【解析】【分析】根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得EF=12BO=2.【详解】解:∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12 BD,∴BO=DO=12BD=4,∵点E、F是AB,AO的中点,∴EF是△AOB的中位线,∴EF=12BO=2,故选:A.【点睛】本题考查了矩形的性质和三角形中位线定理,难度不大,关键熟练掌握知识点,并灵活运用.8. 如图,△BCD内接于⊙O,∠D=70°,OA⊥BC交⨀O于点A,连接AC,则∠OAC的度数为()A. 40°B. 55°C. 70°D. 110°【答案】B【解析】【分析】连接OB,OC,根据圆周角定理得到∠BOC=2∠D=140°,根据垂径定理得到∠COA1702BOC=∠=︒,根据等腰三角形的性质即可得到结论.【详解】解:连接OB,OC,∵∠D=70°,∴∠BOC=2∠D=140°,∵OA⊥BC,∴∠COA1702BOC=∠=︒,∵OA=OC,∴∠OAC=∠OCA12(180°﹣70°)=55°,故选:B.【点睛】本题考查了三角形的外接圆与外心,垂径定理,等腰三角形性质,三角形的内角和定理,正确的作出辅助线是解题的关键.9. 已知一元二次方程x2﹣10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为()A. 6B. 10C. 12D. 24【答案】C【解析】【分析】利用因式分解法求出已知方程的解确定出菱形两条对角线长,进而求出菱形面积即可.【详解】解:方程x2﹣10x+24=0,分解得:(x﹣4)(x﹣6)=0,可得x﹣4=0或x﹣6=0,解得:x=4或x=6,∴菱形两对角线长为4和6,则这个菱形的面积为12×4×6=12.故选:C.【点睛】此题考查了求解一元二次方程和菱形的面积公式,难度一般.10. 将抛物线y=(x﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为()A. y=x2﹣8x+22B. y=x2﹣8x+14C. y=x2+4x+10D. y=x2+4x+2【答案】D【解析】【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】解:将抛物线y=(x﹣1)2+2向左平移3个单位长度所得抛物线解析式为:y=(x﹣1+3)2+2,即y=(x+2)2+2;再向下平移4个单位为:y=(x+2)2+2﹣4,即y=(x+2)2﹣2=x2+4x+2.故选:D.【点睛】本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.11. 如图.在平面直角坐标系中,△AOB 的面积为27 8,BA垂直x 轴于点A,OB 与双曲线y=kx相交于点C ,且BC ∶OC=1∶2,则k的值为()A. ﹣3B. ﹣94C. 3D.92【答案】A【解析】【分析】过C作CD⊥x轴于D,可得△DOC∽△AOB,根据相似三角形性质求出S△DOC,由反比例函数系数k的几何意义即可求得k.【详解】解:过C作CD⊥x轴于D,∵BCOC=12,∴OCOB=23,∵BA⊥x轴,∴CD∥AB,的∴△DOC ∽△AOB , ∴DOC AOB S S ∆∆=(OC OB )2=(23)2=49, ∵S △AOB =278, ∴S △DOC =49S △AOB =49×278=32, ∵双曲线y =k x在第二象限, ∴k =﹣2×32=﹣3, 故选:A . 【点睛】本题主要考查了反比例函数系数k 的几何意义,相似三角形的性质和判定,根据相似三角形的性质和判定求出S △DOC 是解决问题的关键.12. 如图,在Rt △ABC 中,∠A =30°,∠C =90°,AB =6,点P 是线段AC 上一动点,点M 在线段AB 上,当AM =13AB 时,PB +PM 的最小值为( )A. 33B. 27C. 23+2D. 33+3【答案】B【解析】 【分析】作B 点关于AC 对称点B ',连接B 'M 交AC 于点P ,则PB +PM 的最小值为B 'M 的长,过点B '作B 'H ⊥AB 交H 点,在Rt △BB 'H 中,B 'H =33,HB =3,可求MH =1,在Rt △MHB '中,B 'M =27,所以PB +PM 的最小值为27.【详解】解:作B 点关于AC 的对称点B ',连接B 'M 交AC 于点P ,∴BP =B 'P ,BC =B 'C ,∴PB +PM =B 'P +PM ≥B 'M ,∴PB +PM 的最小值为B 'M 的长,过点B '作B 'H ⊥AB 交H 点,的∵∠A =30°,∠C =90°,∴∠CBA =60°,∵AB =6,∴BC =3,∴BB '=BC +B 'C =6,在Rt △BB 'H 中,∠B 'BH =60°,∴∠BB 'H =30°,∴BH =3, 由勾股定理可得:2222''6333B H B B BH =-=-=, ∴AH =AB -BH =3,∵AM =13AB , ∴AM =2,∴MH =AH -AM =1,在Rt △MHB '中,()2222''33127B M B H MH =-=-=,∴PB +PM 的最小值为27,故选:B .【点睛】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB +PM 的最小值为B 'M 的长.二、填空题目:本大题共6小题,每小题3分,共18分.请在每小题的空格中填上正确答案.错填、不填均不得分.13. 若21x -在实数范围内有意义,则x 的取值范围是_______.【答案】x≥12. 【解析】【详解】试题分析:根据被开方数大于等于0列式计算即可得解.试题解析:由题意得,2x﹣1≥0,解得x≥12.考点:二次根式有意义的条件.14. 计算:(π﹣3)0+(﹣12)﹣2﹣4sin30°=___.【答案】3【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值分别化简得出答案.【详解】解:原式=1+4﹣4×1 2=1+4﹣2=3.故答案为:3.【点睛】此题主要考查了负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质,正确化简各数是解题关键.15. 若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是_________°.【答案】120.【解析】【详解】试题分析:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则6180nπ⨯=4π,解得:n=120.故答案为120.考点:圆锥的计算.16. 若关于x的分式方程21xx-﹣1=1mx-无解,则m=___.【答案】2【解析】【分析】去分母,将分式方程转化为整式方程,根据分式方程有增根时无解求m的值.【详解】解:21xx-﹣1=1mx-,方程两边同时乘以x﹣1,得2x﹣(x﹣1)=m,去括号,得2x﹣x+1=m,移项、合并同类项,得x =m ﹣1,∵方程无解,∴x =1,∴m ﹣1=1,∴m =2,故答案为2.【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.17. 如图.在Rt △ABC 中,∠A =90°,AC =4.按以下步骤作图:(1)以点B 为圆心,适当长为半径画弧,分别交线段BA ,BC 于点M ,N ;(2)以点C 为圆心,BM 长为半径画弧,交线段CB 于点D ;(3)以点D 为圆心,MN 长为半径画弧,与第2步中所面的弧相交于点E ;(4)过点E 画射线CE ,与AB 相交于点F .当AF =3时,BC 的长是_______________.【答案】45 【解析】 【分析】利用基本作图得到∠FCB =∠B ,则FC =FB ,再利用勾股定理计算出CF =5,则AB =8,然后利用勾股定理可计算出BC 的长.【详解】解:由作法得∠FCB =∠B ,∴FC =FB ,在Rt △ACF 中,∵∠A =90°,AC =4,AF =3,∴CF =2234+=5,∴BF =5,∴AB =AF +BF =8,在Rt △ABC 中,BC =22AC AB +=2248+=45. 故答案为45.【点睛】本题考查了作图﹣基本作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质作图,逐步操作即可.18. 按一定规律排列的一列数依次为23,14,215,112,235,…,按此规律排列下去,这列数中的第n个数是___________________.【答案】2(21)(21)n n-+(n 是偶数),14(21)n-(n 是奇数)【解析】【分析】观察一列数可得22331=⨯,11414=⨯,221535=⨯,111234=⨯,223557=⨯,…,按此规律排列下去,即可得这列数中的第n个数.【详解】解:观察一列数可知:23=213⨯,14=114⨯,215=235⨯,112=134⨯,235=257⨯,…,按此规律排列下去,这列数中的第n个数是:2(21)(21)n n-+(n是偶数),14(21)n-(n是奇数),故答案为:2(21)(21)n n-+(n是偶数),14(21)n-(n是奇数).【点睛】此题考查规律总结,根据已知数据找出规律用代数式表示即可.三、解答题:本大题共9小题,共66分,解答应写出女字说明、证明过程或演步骤.19. 解不等式组2312132xx x+>⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来.【答案】﹣1<x≤2,解集在数轴上的表示见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式2x+3>1,得:x>﹣1,解不等式213x-≤2x,得:x≤2,则不等式组的解集为﹣1<x ≤2, 将不等式组解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的基本步骤,并理解同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.20.先化简,再求值:2212a a a ++-•221a a --﹣(11a -+1),其中a =10.【答案】11a -,19. 【解析】【分析】根据分式的乘法和加减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】解:2212a a a ++-•221a a --﹣(11a -+1)=2(1)22(1)(1)a a a a a +-⋅-+-﹣111a a +--=111a aa a +--- =11a aa +-- =11a -, 当a =10时,原式=1101-=19. 【点睛】本题主要考查了分式的化简求值,解题的关键是熟练掌握分式四则运算的基本步骤,还要注意分子分母为多项式时,能因式分解,要先因式分解.21. 如图,AB ∥DE ,B ,C ,D 三点在同一条直线上,∠A =90°,EC ⊥BD ,且AB =CD .求证:AC =CE .的【答案】证明见解析. 【解析】【分析】由平行线的性质得出∠B =∠D ,再由垂直的定义得到∠DCE =90°=∠A ,即可根据ASA 证明△ABC ≌△CDE ,最后根据全等三角形的性质即可得解. 【详解】证明:∵AB ∥DE , ∴∠B =∠D ,∵EC ⊥BD ,∠A =90°, ∴∠DCE =90°=∠A , 在△ABC 和△CDE 中,B D AB CD A DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△CDE (ASA ), ∴AC =CE .【点睛】此题考查了平行线的性质,全等三角形的判定与性质,根据证明△ABC ≌△CDE 是解题的关键.22. 列方程(组)解应用题为振兴农村经济,某县决定购买A ,B 两种药材幼苗发给农民栽种,已知购买2棵A 种药材幼苗和3棵B 种药材幼苗共需41元.购买8棵A 种药材幼苗和9棵B 种药材幼苗共需137元.问每棵A 种药材幼苗和每棵B 种药材幼苗的价格分别是多少元? 【答案】每棵A 种药材幼苗的价格是7元,每棵B 种药材幼苗的价格是9元. 【解析】【分析】设每棵A 种药材幼苗的价格是x 元,每棵B 种药材幼苗的价格是y 元,根据“购买2棵A 种药材幼苗和3棵B 种药材幼苗共需41元.购买8棵A 种药材幼苗和9棵B 种药材幼苗共需137元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 【详解】解:设每棵A 种药材幼苗的价格是x 元,每棵B 种药材幼苗的价格是y 元, 依题意得:234189137x y x y +=⎧⎨+=⎩,解得:79xy=⎧⎨=⎩,答:每棵A种药材幼苗的价格是7元,每棵B种药材幼苗的价格是9元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23. 为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.(1)在抽取的200名学生中,选择“演讲比赛”的人数为,在扇形统计图中,m的值为.(2)根据本次调查结果,估计全校2000名学生中选择“文艺汇演”的学生大约有多少人?(3)现从喜爱“知识竞赛”的四名同学a、b、c、d中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a同学参加的概率.【答案】(1)40人,30;(2)800人;(3)12.【解析】【分析】(1)总人数乘以A对应的百分比即可求出其人数,再根据四种方案的人数之和等于总人数求出C方案人数,再用C方案人数除以总人数即可得出m的值;(2)总人数乘以样本中B方案人数所占比例;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:(1)在抽取的200名学生中,选择“演讲比赛”的人数为200×20%=40(人),则选择“书画展览”的人数为200﹣(40+80+20)=60(人),∴在扇形统计图中,m %=60200×100%=30%,即m =30, 故答案为:40人,30;(2)估计全校2000名学生中选择“文艺汇演”的学生大约有2000×80200=800(人); (3)列表如下:由表可知,共有12种等可能结果,其中a 同学参加有6种结果, 所以a 同学参加的概率为612=12. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.24. 已知第一象限点P (x ,y)在直线y =﹣x +5上,点A 的坐标为(4,0),设△AOP 的面积为S .(1)当点P 的横坐标为2时,求△AOP 的面积; (2)当S =4时,求点P 的坐标;(3)求S 关于x 的函数解析式,写出x 的取值范围,并在图中画出函数S 的图象. 【答案】(1)6;(2)(3,2);(3)S =﹣2x +10(0<x <5),图见解析.的【解析】【分析】(1)求出点P坐标,再根据三角形面积公式进行计算即可;(2)当S=4时求出点P的纵坐标,进而确定其横坐标;(3)根据三角形的面积计算方法以及一次函数关系式得出答案.【详解】解:(1)把点P的横坐标为2代入得,y=﹣2+5=3,∴点P(2,3),∵点A的坐标为(4,0),∴4OA ,∴S△AOP=12×4×3=6;(2)当S=4时,即12×4×y=4,∴y=2,当y=2时,即2=﹣x+5,解得x=3,∴点P(3,2);(3)由题意得,S=12OA•y=2y=2(﹣x+5)=﹣2x+10,当y>0时,即0<x<5时,S=2(﹣x+5)=﹣2x+10,∴S关于x的函数解析式为S=﹣2x+10(0<x<5),画出的图象如图所示.【点睛】本题考查待定系数法求一次函数关系式,一次函数图象上点的坐标特征,将坐标转化为线段的长,利用三角形的面积公式得出关系式是解决问题的关键.25. 如图,为了测量某建筑物CD的高度,在地面上取A,B两点,使A、B、D三点在同一条直线上,拉姆同学在点A处测得该建筑物顶部C的仰角为30°,小明同学在点B处测得该建筑物顶部C的仰角为45°,且AB=10m.求建筑物CD的高度.(拉姆和小明同学的身高忽略不计.结果精确到0.1m,3≈1.732)【答案】约为13.7m.【解析】【分析】连接AC、BC,由锐角三角函数定义求出BD=CD,AD=3CD,再由AB=AD ﹣BD,即可求解.【详解】解:连接AC、BC,如图所示:由题意得:∠A=30°,∠DBC=45°,AB=10m,在Rt△BDC中,tan∠DBC=CDBD=tan45°=1,∴BD=CD,在Rt△ACD中,tan∠DAC=CDAD=tan30°=33,∴AD=3CD,∴AB=AD﹣BD=3CD﹣CD=10(m),解得:CD=53+5≈13.7(m),答:建筑物CD的高度约为13.7m.【点睛】本题考查了解直角三角形的应用−仰角俯角问题,熟练掌握锐角三角函数定义,求出BD=CD,AD=3CD是解答本题的关键.26. 如图,AB是⨀O的直径,OC是半径,延长OC至点D.连接AD,AC,BC.使∠CAD =∠B.(1)求证:AD是⨀O的切线;(2)若AD=4,tan∠CAD=12,求BC的长.【答案】(1)证明见解析;(2)1255.【解析】【分析】(1)根据AB是⨀O的直径得出∠B+∠BAC=90°,等量代换得到∠CAD+∠BAC =90°,即∠BAD=90°,AD⊥OA,即可判定AD是⨀O的切线;(2)过点D作DM⊥AD交AC的延长线于点M,根据锐角三角函数定义求出DM=2,由等边对等角得出∠OAC=∠OCA,由平行线的性质得出∠M=∠OAC,再根据对顶角相等得出∠DCM=∠M,即得DC=DM=2,根据勾股定理求出OA=3,AB=6,最后根据勾股定理求解即可.【详解】(1)证明:∵AB是⨀O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠CAD=∠B,∴∠CAD+∠BAC=90°,即∠BAD=90°,∴AD⊥OA,∴AD是⨀O的切线;(2)解:过点D作DM⊥AD交AC的延长线于点M,∵tan∠CAD=12=DMAD,AD=4,∴DM=2,∵OA=OC,∴∠OAC=∠OCA,∵AD⊥OA,DM⊥AD,∴OA∥DM,∴∠M=∠OAC,∵∠OCA=∠DCM,∴∠DCM=∠M,∴DC=DM=2,在Rt△OAD中,OA2+AD2=OD2,即OA2+42=(OC+2)2=(OA+2)2,∴OA=3,∴AB=6,∵∠CAD=∠B,tan∠CAD =12,∴tan B =tan∠CAD =ACBC=12,∴BC=2AC,在Rt△ABC中,AB2=AC2+BC2,∴62=5AC2,∴AC=655,∴BC=1255.【点睛】此题考查了切线的判定与性质、解直角三角形,熟记切线的判定与性质及锐角三角函数定义时解题的关键.27. 在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点.与y轴交于点C.且点A的坐标为(﹣1,0),点C的坐标为(0,5).(1)求该抛物线解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时,求点P的坐标;(3)图(乙)中,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M 使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.的【答案】(1)y =﹣x 2+4x +5;(2)P(52,354);(3)存在,M 的坐标为:(3,8)或(﹣3,﹣16)或(7,﹣16). 【解析】【分析】(1)将A 的坐标(﹣1,0),点C 的坐(0,5)代入y =﹣x 2+bx +c ,即可得抛物线的解析式为y =﹣x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =﹣x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =2PQ,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =﹣x +5,设P (m ,﹣m 2+4m +5),(0<m <5),则Q (m ,﹣m +5),PQ =﹣(m ﹣52)2+254,故当m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P (52,354); (3)抛物线y =﹣x 2+4x +5对称轴为直线x =2,设M (s ,﹣s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组225022450522s s s t ++⎧=⎪⎪⎨-++++⎪=⎪⎩,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得252022440522s s s t ++⎧=⎪⎪⎨-++++⎪=⎪⎩,解得M (﹣3,﹣16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则202522455022s s s t ++⎧=⎪⎪⎨-++++⎪=⎪⎩,解得M (7,﹣16).【详解】解:(1)将A 的坐标(﹣1,0),点C 的坐(0,5)代入y =﹣x 2+bx +c 得: 015b c c =--+⎧⎨=⎩,解得45b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =﹣x 2+4x +5中,令y =0得﹣x 2+4x +5=0,解得x =5或x =﹣1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =2PQ , ∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =﹣1,∴直线BC 解析式为y =﹣x +5,设P (m ,﹣m 2+4m +5),(0<m <5),则Q (m ,﹣m +5),∴PQ =(﹣m 2+4m +5)﹣(﹣m +5)=﹣m 2+5m =﹣(m ﹣52)2+254, ∵a =﹣1<0,∴当m=52时,PQ 最大为254,∴m=52时,PH最大,即点P到直线BC的距离最大,此时P(52,354);(3)存在,理由如下:抛物线y=﹣x2+4x+5对称轴为直线x=2,设M(s,﹣s2+4s+5),N(2,t),而B(5,0),C(0,5),①以MN、BC为对角线,则MN、BC的中点重合,如图:∴225022450522ss s t++⎧=⎪⎪⎨-++++⎪=⎪⎩,解得33st=⎧⎨=-⎩,∴M(3,8),②以MB、NC为对角线,则MB、NC的中点重合,如图:∴2520 22440522ss s t++⎧=⎪⎪⎨-++++⎪=⎪⎩,解得321st=-⎧⎨=-⎩,∴M(﹣3,﹣16),③以MC、NB为对角线,则MC、NB中点重合,如图:202522455022ss s t++⎧=⎪⎪⎨-++++⎪=⎪⎩,解得711st=⎧⎨=-⎩,∴M(7,﹣16);综上所述,M的坐标为:(3,8)或(﹣3,﹣16)或(7,﹣16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.祝你考试成功!祝你考试成功!。
2021年中考数学统一命题的省自治区压轴模拟试卷2021年中考数学压轴模拟试卷01 (西藏专用)(满分120分,考试时间为120分钟)一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分)1. 20+(﹣20)的结果是()A. ﹣40B. 0C. 20D. 402. 如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.3. 2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元4. 下列因式分解正确的是()A. x2﹣4=(x+4)(x﹣4)B. x2+2x+1=x(x+2)+1C. 3mx﹣6my=3m(x﹣6y)D. 2x+4=2(x+2)5. 若一个圆内接正多边形的中心角是36°,则这个多边形是()A.正五边形B.正八边形C.正十边形D.正十八边形6. 下列各式的变形中,正确的是()A. 22()()x y x y x y ---+=- B.11x x x x--= C. 22(4321)x x x -+=-+ D. ()211x x x x ÷+=+ 7. 如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB =DC ,AD =BC C .AB ∥DC ,AD =BC D .OA =OC ,OB =OD8. 为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2 则关于这组数据的结论正确的是( )A .平均数是144B .众数是141C .中位数是144.5D .方差是5.49. 如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A. 3B. 4C. 5D. 610. 如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A. 433π- B.4233π- C. 833π- D.8233π-11. 如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)12. 已知整数a1、a2、a3、a4、……满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……,a n+1=﹣|a n+n|(n为正整数)依此类推,则a2020值为()A.﹣1008 B.﹣1009 C.﹣1010 D.﹣1011二、填空题(本题共6小题,每小题3分,共18分)13. 若3x+在实数范围内有意义,则实数x的取值范围是__________.14. 方程的解为.15. 计算:()﹣1.16. 如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于.17. 抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.18. 如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把PFE沿PE折叠,得到PBE△,连接CF.若AB=10,BC=12,则CF的最小值为_____.三、解答题(共7道小题,共66分。
西藏2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020九上·深圳期末) 实数2020的相反数是()【考点】2. (2分)下面的几何体中,主视图不是矩形的是A .B .C .D .【考点】3. (2分) (2019八下·长春期中) 关于一次函数,下列说法正确是()A . 它的图象过点B . 它的图象经过第一、二、三象限C . 随的增大而增大D . 当时,总有【考点】4. (2分) (2019七下·吴江期末) 下列命题中的假命题是()A . 同旁内角互补B . 三角形的一个外角等于与它不相邻的两个内角之和C . 三角形的中线,平分这个三角形的面积D . 全等三角形对应角相等【考点】5. (2分)(2019·吴兴模拟) 随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升. 某书店分别用400元和600元两次购进该小说,第二次数量比第一次多5套,且两次进价相同. 若设该书店第一次购进x套,根据题意,列方程正确的是()A .B .C .D .【考点】6. (2分) (2015七下·启东期中) 下列运算正确的是()A .B . |﹣3|=3C .D .【考点】7. (2分) (2019八下·湖南期中) 如图,在菱形 ABCD 中,对角线 AC,BD 交于点 O,AO=3,∠ABC=60°,则菱形 ABCD 的面积是()A . 18B . 18C . 36D . 36【考点】8. (2分) (2020八上·柯桥期中) 如果三角形有一边上的中线长恰好等于这条边长,那么称这个三角形是“有趣三角形”,这条中线为“有趣中线”.如图,在△ABC中,∠C=90°,较短的直角边BC=,且△ABC是“有趣三角形”,则△ABC的“有趣中线”的长为()A . 1B .C . 2D .【考点】9. (2分) (2020七下·北京月考) 用“ ”定义一种新运算:对于任意有理数和,(为常数),如:.若,则的值为()A . 7B . 8C . 9D . 10【考点】10. (2分) (2019八上·重庆期末) 如图,在平行四边形中,对角线、相交成的锐角,若,,则平行四边形的面积是A . 6B . 8C . 10D . 12【考点】二、填空题 (共6题;共6分)11. (1分) (2019七上·进贤期中) 设a与b互为相反数,c与d互为倒数,比较大小则: ________(填>、=、<).【考点】12. (1分) (2019七上·洪泽期末) 若xmy2和x3yn是同类项,则mn=________.【考点】13. (1分) (2019八上·盘龙镇月考) 如图,在三角形ABC中,DE垂直平分BC,交BC、AB分别于 D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACF=16°,则∠EFB= ________【考点】14. (1分)(2017·阿坝) 在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是________.【考点】15. (1分) (2018八上·金堂期中) 如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和10㎝的长方体无盖盒子中,则细木棒露在盒外面的最短长度是________㎝.【考点】16. (1分)如图所示的抛物线是二次函数的图象,那么a的值是________ .【考点】三、解答题 (共8题;共106分)17. (5分)(2017·盘锦模拟) 先化简,再从﹣2<x<3中选一个合适的整数代入求值.【考点】18. (5分) (2019九上·柘城月考) 解下列方程:(1)(2);【考点】19. (25分) (2018八上·南充期中) 已知,如图,在△ABC 中, ∠BAC=90°AB=AC,AE 是过点A的一条直线,且 B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E。
2021年西藏中考数学考前最后一卷解析版
一.选择题(共12小题,满分36分)
1.(3分)在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()A.2B.﹣1C.﹣3D.﹣4
【解答】解:(﹣1)+(﹣3)=﹣4.
故选:D.
2.(3分)如图是某兴趣社制作的模型,则它的俯视图是()
A.B.C.D.
【解答】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.
故选:B.
3.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为()
A.1.56×109B.1.56×108C.15.6×108D.0.156×1010
【解答】解:1 560 000 000用科学记数法表示为1.56×109.
故选:A.
4.(3分)下列因式分解正确的是()
A.2x2y﹣4xy2+2xy=2xy(x﹣2y)
B.x(x﹣y)﹣(y﹣x)=(x﹣y)(x﹣1)
C.x2﹣2x+4=(x﹣2)2
D.4x2﹣16=4(x+2)(x﹣2)
【解答】解:A、原式=2xy(x﹣2y+1),不符合题意;
B、原式=x(x﹣y)+(x﹣y)=(x﹣y)(x+1),不符合题意;
C、原式不能分解,不符合题意;
第1 页共14 页。