安徽省六安市第一中学2017-2018学年高一下学期开学考试数学(文)试题扫描版含答案
- 格式:doc
- 大小:3.05 MB
- 文档页数:8
安徽六校教育研究会2017级高一新生入学素质测试高一数学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.中国海军第一艘国产航母001A 型航母在2017年4月26日下水,该航母的飞行甲板长约300米,宽约70米,总面积约21000平方米,将21000用科学记数法表示应为( )A .50.2110⨯B .42.110⨯C .32110⨯D .52.110⨯2.下列整式计算的结果为6a 是( )A .33a a +B .122a a +C .23()aD .24()a 3.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )A .B .C .D .4.用频率估计概率,可以发现,抛掷硬币“正面朝上”的概率为0.5是指( )A .连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B .连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n 次硬币,恰好有n 次“正面朝上”D .抛掷n 次,当n 越来越大时,正面朝上的频率会越来越稳定于0.55.分式11x --可变形为( ) A .11x -- B .11x + C. 11x -+ D .11x -6.不等式12x +≥的解集在数轴上表示正确的是( )A .B .C.D . 7.已知实数755+的小数部分为a ,575-的小数部分为b ,则57a b +的值为( ) A . 4 B .5 C. 6 D .78.在抛物线223y ax ax a =--上有1(0.5,)A y -、2(2,)B y 、3(3,)C y 三点,若抛物线与y 轴的交点在正半轴上,则1y 、2y 和3y 的大小关系为( )A .312y y y <<B .321y y y << C. 213y y y << D .123y y y <<9.如图,在矩形ABCD 中,AB a =,AD b =,分别延长AB 至点E ,AD 至F ,使得()AF AE c b a c ==<<,连接EF ,交BC 于点M ,交CD 于点N ,则AMN ∆的面积为( )A .1()2c a b c +-B .1()2c b c a +- C. 1()2c a c b +- D .1()2a b c a +- 10.挑棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走,如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走( )A .②号棒B .⑦号棒 C.⑩号棒 D .⑧号棒二、填空题(每题4分,满分16分,将答案填在答题纸上)11.分解因式:224ax ay -= .12.已知集合{||2|3}A x R x =∈+<,集合{|()(2)0}B x R x m x =∈--<,且(1,)AB n =-,则m = ,n = .13.如图,在矩形ABCD 中,4AB =,2AD =,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则BE 的长度为 .14.如图,,AD AE 分别是ABC ∆的中线和交平分线,2AC =,5AB =,过点C 作CF AE ⊥于F ,连接DF ,有下列结论:①若将ACF ∆沿直线AE 折叠,则点C 恰好落在AB 上;②327AD <<;③若30B ∠=,15FCE ∠=,则55ACB ∠=;④若ABC ∆的面积为S ,则DFC ∆的面积为320S . 其中正确的结论是 .(把所有正确结论的序号都选上)三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.计算:01112cos 45(1)()42π--++. 16.已知函数2()426f x x ax a =+++.(1)若函数()f x 的值域为[0,)+∞,求a 的值;(2)若函数()f x 的函数值均为非负数,求()2|3|g a a a =-+的值域.17. 如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.(1)画出ABC ∆关于y 轴对称的111A B C ∆;(2)将ABC ∆绕着点B 顺时针旋转90后得到22A BC ∆,请在图中画出22A BC ∆,并求出线段BC 旋转过程中所扫过的面积(结果保留π).18. 如图,在楼房AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D 点,且俯角α为45,从距离楼底B 点1米的P 点处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为30,已知树高6EF =米,求塔CD 的高度.(结果保留根号)四、(本大题共2小题,每题6分,满分12分)19.在反比例函数6(0)y x x =>的函数图像上有点1231,,,,,n n P P P P P +,过点1231,,,,,n n P P P P P +分别作x 轴,y 轴的垂线段,构成若干个矩形,将图形中阴影部分面积从左至右依次记为123,,,,n S S S S .(1)若点1234,,,P P P P 的横坐标依次为1,2,3,4,则1S = ,2S = ,3S = ;(2)若点1231,,,,,n n P P P P P +的横坐标依次为2,4,6,…,则9S = ; 若点1231,,,,,n n P P P P P +的横坐标依次为,2,3,a a a ,则n S = .20.如图,圆O 与直线l 相离,OA l ⊥于点A ,OA 交圆O 于点C ,过点A 作圆O 的切线AB ,切点为B ,连接BC 交直线l 于点D .(1)求证:AB AD =;(2)若tan 2OCB ∠=,圆O 的半径为3,求BD 的长.五、(本大题共1小题,每题10分,满分10分)21.已知抛物线21222y x mx m =+--与x 轴交于,A B 两点,点A 在点B 的左边,与y 轴交于点C . (1)当1m =时,求点A 和点B 的坐标;(2)抛物线上有一点(1,)D n -,若ACD ∆的面积为5,求m 的值;(3)P 为抛物线上,A B 之间一点(不包含,A B ),PM x ⊥轴于点M ,求AM BM PM•的值. 六、(本大题共1小题,每题12分,满分12分)22.某数学兴趣小组对线段上的动点问题进行探究,已知8AB =.问题思考:如图1,点P 为线段AB 上的一个动点,分别以,AP BP 为边在同侧作正方形APDC 与正方形PBFE .(1)在点P 运动时,这两个正方形面积之和是定值吗?如果是请求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接,,AD DF AF ,AF 交DP 于点K ,当点P 运动时,在APK ∆、ADK ∆、DFK ∆中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB 为边作正方形ABCD ,动点,P Q 在正方形ABCD 的边上运动,且8PQ =,若点P 从点A 出发,沿A B C D →→→的线路,向D 点运动,求点P 从A 到D 的运动过程中,PQ 的中点O 所经过的路径的长.(4)如图3,在“问题思考”中,若点,M N 是线段AB 上的两点,且1AM BM ==,点,G H 分别是边,CD EF 的中点,请直接写出点P 从M 到N 的运动过程中,GH 的中点O 所经过的路径的长及OM OB +的最小值.安徽六校教育研究会2017级高一新生入学素质测试高一数学试题答案一、选择题1-5 B C A D D 6-10 D B A A C二、填空题11. )2)(2(y x y x a -+ 12.-1,1 13.π32 14. ①②④ 三、计算15.223+ 16.(1)-1或1.5 (2) g (a )的值域为⎥⎦⎤⎢⎣⎡4,419- 17.(1)略 (2)π413 18. 米)326(+ 四、 19.(1)3 121 (2) 151 (3) )1(6+n n 20.(1)证明:连接OB ,∵AB 是圆O 的切线,OA l ⊥,∴90OBA OAD ∠=∠=,又OB OC =,∴OBC COB ACD ∠=∠=∠,∴ADB ABD ∠=∠,∴AB AD =(2)∵tan tan 2AD OCB ACD AC ∠=∠==, 圆O 的半径为3,设AC a =,则2AB AD a ==,在Rt AOB ∆中,222OA AB OB =+,∴222(3)(2)3a a +=+,∴2a =过点A 作AE BD ⊥,则5BD BE ==,∴BD = 五、(1)∵m =1,∴ y =12x 2+x -4. 当y =0时,12x 2+x -4=0, 解之,得x 1=﹣4,x 2=2.∴A (﹣4,0),B (2,0);(2)过点D 作DE ⊥AB 于点E ,交AC 于点F .当y =0时,12x 2+mx -2m -2=0, ∴(x -2)(x +2m +2)=0,x 1=2,x 2=﹣2m -2.∴点A 的坐标为:(﹣2m -2,0),C (0,﹣2m -2).∴OA =OC =2m +2,∴∠OAC =45°.∵D (﹣1,n ),∴OE =1,∴AE =EF =2m +1.又∵n =﹣3m -32, ∴DE =3m +32, ∴DF =3m +32-(2m +1)=m +12. 又∵S △ACD =12DF ·AO . ∴12(m +12)(2m +2)=5. 2m 2+3m -9=0,(2m -3)(m +3)=0,(3)点A 的坐标为:(﹣2m -2,0),点B 的坐标为:(2,0).设点P 的坐标为(p ,q ).则AM =p +2m +2,BM =2-p .AM ·BM =(p +2m +2)( 2-p )=﹣p 2-2mp +4m +4.PM =﹣q .因为,点P 在抛物线上,所以,q =12p 2+mp -2m -2. 所以,AM ·BM =2 PM .即,AM ·BM PM =2. 六、21.(1)不是定值,最小值32(2)存在设AP a =,则8PB BF a ==-,∵//PE BF , ∴PK AP BF AB =,即88PK a a =-, ∴(8)8a a PK -=, ∴2(8)88a a a DK PD PK a -=-=-= ∴21(8)216APK a a S PK PA ∆-=•=,21(8)216DFK a a S DK EF ∆-=•=, ∴DFK APK S S ∆∆=(3)当点P 从点A 出发,沿A B C D →→→的线路,向点D 运动时,不妨设点Q 在DA 边上, 若点P 在点A ,点Q 在点D ,此时PQ 的中点O 即为DA 边的中点,若点Q 在DA 边上,且不在点D ,则点P 在AB 上,且不在点A ,此时,在Rt APQ ∆中,O 为PQ 的中点,所以142AO PQ ==, 所以点O 在以A 为圆心,半径为4,圆心角为90的圆弧上,PQ 的中点O 所经过的路径是三段半径为4,圆心角为90的圆弧,如图所示,所以PQ 的中点O 所经过的路径的长为32464ππ⨯⨯=, (4)点O 所经过的路径的长为3,OM OB +113安徽六校教育研究会2017级高一新生入学素质测试高一数学试题答案一、选择题1-5 B C A D D 6-10 D B A A C三、填空题12. )2)(2(y x y x a -+ 12.-1,1 13.π32 14. ①②④ 四、计算 16.223+ 16.(1)-1或1.5 (2) g (a )的值域为⎥⎦⎤⎢⎣⎡4,419- 17.(1)略 (2)π413 18. 米)326(+ 四、 22.(1)3 121 (2) 151 (3) )1(6+n n 23.(1)略 (2)5516 五、(1)∵m =1,∴ y =12 x 2+x -4. 当y =0时,12x 2+x -4=0,解之,得x 1=﹣4,x 2=2.∴A (﹣4,0),B (2,0);……………………………3分(2)过点D 作DE ⊥AB 于点E ,交AC 于点F .当y =0时,12x 2+mx -2m -2=0, ∴(x -2)(x +2m +2)=0,x 1=2,x 2=﹣2m -2.∴点A 的坐标为:(﹣2m -2,0),C (0,﹣2m -2).……………………………4分 ∴OA =OC =2m +2,∴∠OAC =45°.∵D (﹣1,n ),∴OE =1,∴AE =EF =2m +1.又∵n =﹣3m -32, ∴DE =3m +32, ∴DF =3m +32-(2m +1)=m +12.……………………………6分 又∵S △ACD =12DF ·AO . ∴12(m +12)(2m +2)=5. 2m 2+3m -9=0,(2m -3)(m +3)=0,分(3)点A 的坐标为:(﹣2m -2,0),点B 的坐标为:(2,0).设点P 的坐标为(p ,q ).则AM =p +2m +2,BM =2-p .AM ·BM =(p +2m +2)( 2-p )=﹣p 2-2mp +4m +4.……………………………10分 PM =﹣q .因为,点P 在抛物线上,所以,q =12 p 2+mp -2m -2.所以,AM ·BM =2 PM .即,AM ·BM PM =2.……………………………12分 六、24.(1)不是定值,最小值32(2)存在DFK APK DFK APK S S a a EF DK S a a PA PK S a a a a PK PD DK a a PK a a PK AB AP BF PK BFPE aBF PB a AP ∆∆∆∆=∴-=⋅=-=⋅=∴=--=-=∴-=∴=-=∴-===16)8(21,16)8(2188)8(8)8(888222,即,则设。
20172018学年下学期高二年级期中考试仿真测试卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·汇文中学]若复数21iz =-,其中i 为虚数单位,则共轭复数z =( ).A .1i +B .1i -C .1i -+D .1i --【答案】B 【解析】()()()21i 21i 1i1i 1i z +===+--+,则复数的共轭复数为1i -,故选B .2.[2018·人大附中]设()ln f x x x =,若()02f x '=,则0x 等于( ) A .2e B .e C .ln 22D .ln2【答案】B【解析】由函数的解析式可得:()ln 1f x x '=+,则()00ln 12f x x '=+=,0ln 1x ∴=,0e x =,本题选择B 选项.3.[2018·北京工大附中]函数332e x y x x -=+-,则导数y '=( )A .2236e xx x-+-B .22312e 3xx x-++此卷只装订不密封班级 姓名 准考证号 考场号 座位号C .22316e 3xx x-++D .22316e 3+x x x--+【答案】D【解析】根据幂函数的求导公式、指数函数的求导公式以及复合函数的求导法则可知,()2222331161633+ee xx y x xx x----=+-⨯-=+',故选D .4.[2018·山西一模]完成下列表格,据此可猜想多面体各面内角和的总和的表达式是( )(说明:上述表格内,顶点数V 指多面体的顶点数.) A .()22πV - B .()22πF -C .()2πE -D .()4πV F +-【答案】A【解析】用正方体(8V =,6F =,12E =)代入选项逐一检验,可排除B ,C ,D 选项. 故选:A5.[2018·湖北联考]如图,在矩形ABCD 中,2AB =,1AD =,以A 为顶点且过点C 的抛物线的一部分在矩形内.若在矩形ABCD 内随机地投一点,则此点落在阴影部分内的概率为( )A .12B .23C .35D .34【答案】B【解析】由题可知建立以AB 为X 轴,AD 为Y 轴的直角坐标系,则抛物线方程为214y x =,:2232011414123y x dx x x =-=-=⎛⎫⎪⎝⎭⎰,则此点落在阴影部分内的概率为42323=. 6.[2018·北京工大附中]函数()21ln 2f x x x =-的图象大致是( )A .B .C .D .【答案】B【解析】由函数()21ln 2f x x x =-得()211x f x x xx'-=-=,定义域为()0,+∞,由()0f x '>,得01x <<;由()0f x '<,得1x >,∴函数()f x 在区间()0,1上单调递增,在()1,+∞上单调递减,且()f x 在()0,+∞上的最大值为()1102f =-<,故选B .7.[2018·豫西名校]已知函数()222e xf x x ax ax =--在[)1,+∞上单调递增,则实数a 的取值范围是( ) A .(],e -∞ B .(],1-∞ C .[),e +∞ D .[)1,+∞【答案】A【解析】()()()()()212121e e x x f x x a x x a =+-+=+-',因为函数()f x 在区间[)1,+∞上单调递增,所以导函数在区间[)1,+∞上上()0f x '≥,即0e x a -≥,e xa ≤,e a ≤,选A .8.[2018·淮北一中]将正整数排成下表: 1 234 56789 ……………则在表中数字2017出现在( ) A .第44行第80列 B .第45行第80列 C .第44行第81列D .第45行第81列【答案】D【解析】因为每行的最后一个数分别为1,4,9,16,…,所以由此归纳出第n 行的最后一个数为2n .因为442=1936,452=2025,所以2017出现在第45行上; 又由2017﹣1936=81,故2017出现在第81列,故选D .9.[2018·人大附中]若函数()32f x x ax a =-+在()01,内无极值,则实数a 的取值范围是( ) A .30,2⎡⎤⎢⎥⎣⎦B .(),0-∞C .3,2⎡⎫+∞⎪⎢⎣⎭D .(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭【答案】D【解析】由函数的解析式可得:()232f x x a '=-,函数()32f x x ax a =-+在()01,内无极值,则()0f x '=在区间()01,内没有实数根, 当0a ≤时,()0f x '≥恒成立,函数()f x 无极值,满足题意,当0a >时,由()0f x '=可得x =1≥,解得:32a ≥, 综上可得:实数a 的取值范围是(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭,本题选择D 选项.10.[2018·中山期末][]0,3的最大值与最小值之积为( )A B C D 【答案】B【解析】结合函数的解析式有:()()()2422f x x x x '=-=+-,当()0,2x ∈时,()'0f x <,()f x 单调递减, 当()2,4x ∈时,()'0f x >,()f x 单调递增, 且:()04f =,()423f =-,()31f =,据此可得函数的最大值为()04f =,函数的最小值为()423f =-,则最大值与最小值之积为416433-⨯=-.本题选择B 选项.11.[2018·南阳一中]从图中所示的矩形OABC 区域内任取一点(),M x y ,则点M 取自阴影部分的概率为( )A .13B .12C .14D .23【答案】B【解析】阴影部分的面积为()()121222221xx dx xx x-----+--=-⎰⎰,矩形的面积为2,故点M 取自阴影部分的概率为12.故选B .12.[2018·豫西名校]偶函数()f x 定义域为ππ,22-⎛⎫⎪⎝⎭,其导函数是()f x '.当0π2x <<时,有()()cos sin 0f x x f x x '+<,则关于x 的不等式()2cos 4πf x f x >⎛⎫⎪⎝⎭的解集为( ) A .ππ,42⎛⎫⎪⎝⎭B .ππππ,,2442-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ C .ππ,44-⎛⎫⎪⎝⎭D .πππ,0,442-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】由题意构造函数()()cos f x F x x=,()()()2cos sin cos f x x f x xF x x+''=,所以函数()F x 在区间π0,2⎛⎫ ⎪⎝⎭()0F x '<,()F x π0,2⎛⎫ ⎪⎝⎭()π2cos 4f x f x >⎛⎫⎪⎝⎭ππ,22x ∈-⎛⎫⎪⎝⎭时,可变形为()π4cos 22f f x x >⎛⎫⎪⎝⎭,即()π4F x F >⎛⎫⎪⎝⎭,即ππ44x -<<.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·首师附中]若复数z 满足,则复数z 的模为__________.【解析】14.[2018·百校联盟]函数()ln g x x =图象上一点P 到直线y x =的最短距离为__________. 2【解析】设与直线y x =平行的且与()ln g x x =相切的直线切点为()00,ln x x ,因为()1ln 'x x=,则011x =,01x ∴=,则切点为()1,0,∴最短距离为切点到直线yx =的距离:2d ==,故答案为2.15.[2018·上饶模拟]二维空间中,圆的一维测度(周长)2πl r =,二维测度(面积)2πS r =;三维空间中,球的二维测度(表面积)24πS r =,三维测度(体积)推理,若四维空间中,“特级球”的三维测度312πV r =,则其四维测度W =__________. 【答案】43πr 【解析】二维空间中圆的一维测度(周长)2πl r =,二维测度(面积)2πS r =;观察发现S l '=,三维空间中球的二维测度(表面积)24πS r =,三维测度(体积)发现V S '=,∴四维空间中“超球”的三维测度38πV r =,猜想其四维测度W ,则312πW V r '==,43πW r ∴=,故答案为43πr .16.[2018·烟台诊断]直线y b =分别与直线21y x =+和曲线ln y x =相交于点A 、B ,则AB 的最小值为____________________. 【答案】ln 212+【解析】两个交点分别为1A ,2b b -⎛⎫ ⎪⎝⎭,()e ,b B b ,1e 2bb AB -=-, 设函数()1e 2xx g x -=-,()1e 2xg x '=-,()0g x '=的根为ln 2x =-,所以()g x 在区间(),ln 2-∞-单调递减,在区间()ln 2,-+∞上单调递增, 所以()()ln 2min g x g =-=ln 212+.填ln 212+.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.[2018·石嘴山中学]已知复数1Z 2ai =+(其中a ∈R 且a 0>,i 为虚数单位),且21z 为纯虚数.(1)求实数a 的值; (2)若1z z 1i=-,求复数z 的模z . 【答案】(1)2;(2)2.【解析】(1)2221(2i)44i z a a a =+=-+,因为21z 为纯虚数,所以2400 0a a a ⎧-=≠>⎪⎨⎪⎩,解得:2a =.·······6分 (2)122i z =+,22i (22i)(1i)4i2i 1i (1i)(1i)2z +++====--+,2z =.·······12分 18.[2018·西城156中]已知函数()32133f x x x x =--.()求()f x 的单调区间.()求()f x 在区间[]3,3-上的最大值和最小值.【答案】(1)单调递增区间为()1-∞-,和()3,+∞,单调递减区间为()1,3-;(2)的最大值为53,最小值为9-.【解析】()由题得()()()22313f x x x x x '=--=+-.令()0f x '>,解得1x <-或3x >,令()0f x '<,解得13x -<<,∴()f x 的单调递增区间为()1-∞-,和()3,+∞,单调递减区间为()1,3-.·······6分()由()可知,()f x 在区间()3,1--上单调递增, 在()1,3-上单调递减,且()39f -=-,()39f =-, ∴()f x 在区间[]3,3-上的最大值为5(1)3f -=, 最小值为()()339f f -==-.·······12分19.[2018·豫西名校](1)当0n ≥时,证明:211n n n n +-+<+-; (2)已知x ∈R ,21a x =-,22b x =+,求证:a ,b 中至少有一个不小于0. 【答案】(1)见解析;(2)见解析.【解析】(1)要证211n n n n +-+<+-, 即证221n n n ++<+,只要证()()22221n nn ++<+,即证()222244n n n n +++<+,即证()21n n n +<+, 只要证22221n n n n +<++,而上式显然成立, 所以211n n n n +-+<+-成立.·······6分 (2)假设0a <且0b <,由210a x =-<得11x -<<,由220b x =+<得1x <-,这与11x -<<矛盾,所以假设错误,所以a 、b 中至少有一个不小于0.·······12分 20.[2018·天津联考]已知曲线21:2C y x =与221:2C y x =在第一象限内交点为P .(1)求过点P 且与曲线2C 相切的直线方程;(2)求两条曲线所围图形(如图所示阴影部分)的面积S . 【答案】解:(1)22212y xy x==⎧⎪⎨⎪⎩,22x y =⎧∴⎨=⎩,(2,2)P ∴,221()22x k x ='==,∴所求切线方程为:220x y --=.·······6分(2)2322320200011142(2)2363xdx x dx x x -=-=⎰⎰,·······12分 解法2:算y x =与212y x =围出的面积,再利用对称性可求.【解析】略.21.[2018·北京八中]若函数()34f x ax bx -=+,当2x =时,函数()f x 有极值43-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围.【答案】(1)()31443f x x x =-+;(2)42833k -<<.【解析】(1)由题意可知()23f x ax b '=-,于是()423f =-,()20f '=解得13a =,4b =故所求的解析式为()31443f x x x =-+. (5)分(2)由(1)可知()2()()422f x x x x =--'+=,令()0f x '=,得2x =或2x =-. 当x 变化时()f x '、()f x 的变化情况如下表所示:x(),2-∞-2-()2,2-2()2,+∞()f x ' + 0 0 +()f x单调递增283单调递减43- 单调递增因此,当2x =-时,()f x 有极大值283;当2x =时,()f x 有极小值43-. 所以函数的大致图象如图,故实数k 的取值范围是42833k -<<.·······12分22.[2018·贺州调研]已知函数()()()ln f x x a x a =+-∈R ,直线22:ln 333l y x =-+-是曲线()y f x =的的一条切线. (1)求a 的值;(2)设函数()()2e 22g x x x f x a a =----+,证明:函数()g x 无零点. 【答案】(1)1a =;(2)见解析. 【解析】(1)()11f x x a'=-+,设切点为()00,P x y ,则()0000121322ln ln 333x a x a x x -=-++-=-+-⎧⎪⎪⎨⎪⎪⎩, 解得02x =,1a =,∴1a =为所求.·······4分(2)由(1)知()()e 2112e ln xxg x x x f x x x x =----+=--,()()()()111e 1e1xxx g x x x xx+=+--=-',令()e 1x G x x =-,∵当0x >时,()()1e 0xG x x =+>',∴函数()G x 在()0+∞,上单调递增, 又()010G =-<,()1e 10G =->,∴()G x 存在唯一零点()0,1c ∈,且当()0,x c ∈时,()0G x <,当(),x c ∈+∞时,()0G x >. 即当()0,x c ∈时,()0g x '<;当(),x c ∈+∞时,()0g x '>, ∴()g x 在()0,c 上单调递减,在(),c +∞上单调递增,∴()()g x g c ≥. ∵()10e x G c c =+-=,01c <<,∴()ln 1ln 0x g c c c c c c c =+--=-->, ∴()()0g x g c ≥>,∴函数()g x 无零点.·······12分。
安徽省六安市第一中学2017-2018学年高二9月月考数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知数列{}{},n n a b 满足11,12n n a a b =+=,121n n n b b a +=-,则2017b =( )A .20172018 B .20182017 C .20152016 D .201620152.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( )A .8B .9C .10D .113.在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( ) A .20 B .22 C .24 D .284. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若ABC ∆的面积为S ,且()222S a b c =+-,则tan C 等于( ) A .34 B .43 C .43- D .34- 5.已知在ABC ∆中45,A AC =︒=若ABC ∆的解有且仅有一个,则BC 满足的条件是( ) A .4BC = B.BC ≥.4BC ≤≤ D .4BC =或BC ≥6.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且满足643a b c ==,则sin 2sin sin AB C=+( )A .1114-B .127C .1124-D .712- 7.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知()cos cos 1,2A C B a c -+==,则C =( ) A .6π或56π B .6π C .3π或23π D .3π 8. 已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( )A .1941 B .1737 C .715 D .20419. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,a 上的高为h ,且3a h =,则c bb c +的最大值为( )A .3B .2 D 10.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .2017 11. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若111,,tan tan tan A B C依次成等差数列,则( )A.,,a b c 依次成等差数列依次成等差数列 C.222,,a b c 依次成等差数列D.333,,a b c 依次成等差数列12. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知22sin cos sin cos 4sin ,cos c A A a C C B B +=D 是线段AC 上一点,且23BCD S ∆=,则AD AC=( ) A .49 B .59C .23D .109 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在等差数列{}n a 中,2526,15,n n a a b a ===,则数列{}n b 的前5项和5S = .14. 在ABC ∆中,60,A BC ∠=︒=,D 是AB 边上的一点,CD =CBD ∆的面积为 1,则AC 边的长为 .15.等差数列{}n a 的前n 项和为n S ,若()94=18,309,336k k S a k S -=>=,则k = .16.已知三角形ABC 中,BC 边上的高与BC 边长相等,则2AC AB BC AB AC AB AC ++⋅的最大值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 等差数列{}n a的前n项和为n S,若575,49a S=-=-(1)求数列{}n a的通项公式n a和前n项和n S;(2)求数列{}n a的前24项和24T.18.已知,,a b c分别是ABC∆角,,A B C的对边,满足sin4sin4sinac A C c A+=(1)求a的值;(2)ABC∆的外接圆为圆O(O在ABC∆内部),3,43OBCS b c∆=+=,判断ABC∆的形状,并说明理由.19. 如图,在四边形ABCD中,:2:3,73ABC AB BC ACπ∠===,.(1)求sin ACB∠的值;(2)若314BCD CDπ∠==,,求ACD∆的面积.20. 在ABC∆中,内角,,A B C所对的边分别为,,a b c,且cos cos2cosa Bb Ac A+=.(1)若ABC∆的面积3S,求证:2a(2)如图,在(1)的条件下,若,M N分别为,AC AB的中点,且13BMCN=,求,b c.21. 已知数列{}n a中,()*1111,22,4nna a n n Na-==-≥∈,数列{}n b满足()*11nnb n Na=∈-. (1)求证:数列{}n b是等差数列,写出{}n b的通项公式;(2)求数列{}n a的通项公式及数列{}n a中的最大项与最小项.22.设数列{}n a 的前n 项和为n S ,()2*11,22n n a S na n n n N ==-+∈. (1)求证:数列{}n a 为等差数列,并分别写出n a 和n S 关于n 的表达式; (2)是否存在自然数n ,使得3212112423n nS S S S n+++++=?若存在,求出n 的值;若不存在,请说明理由; (3)设()()*27n n c n N n a =∈+,()*123n n T c c c c n N =++++∈,若不等式()32n mT m Z >∈对*n N ∈恒成立,求m 的最大值.试卷答案一、选择题1-5: ABCCD 6-10:ABABC 11、12:CB 二、填空题三、解答题17.解:(1)由题得1145767492a d a d +=-⎧⎪⎨⨯+=-⎪⎩,1132a d =-⎧⎨=⎩ ∴215n a n =-,()14n S n n =-(2)当17n ≤≤时,0n a <,当8n >时,0n a > ()()724=771449,242414240S S ⨯-=-=⨯-=∴()2472472472338T S S S S S =+-=-= 18.解:(1)由正弦定理可知,sin ,sin 22a cA C R R==,则 2sin 4sin 4sin 44ac A C c A a c c ac +=⇔+=,∵0c ≠,∴()222444420a c c ac a a a +=⇔+=⇔-=,可得2a =. (2)记BC 中点为D,12OBC S BC OD OD ∆=⋅⋅==120BOC ∠=︒, 圆O的半径为r =,由正弦公式可知sin 2a A r =,故60A =︒, 由余弦定理可知,2222cos a b c bc A =+-,由上可得224b c bc =+-,又4b c +=,则2b c ==,故ABC ∆为等边三角形.19.解:(1)由:2:3AB BC =,可设2,3AB x BC x ==.又∵3AC ABC π=∠=,∴由余弦定理,得()()22232232cos3x x x x π=+-⨯⨯,解得1x =,∴23AB BC ==,,由正弦定理,得2sinsinAB ABCACBAC∠∠===(2)由(1)得cos ACB∠=因为34BCDπ∠=,所以34ACD ACBπ∠+∠=,333sin sin sin cos cos sin444ACD ACB ACB ACBπππ⎛⎫∠=-∠=∠-∠⎪⎝⎭(214+=+=又因为1CD=,所以1sin2S AC CD ACD=⨯⨯∠=20.解:(1)由cos cos2cosa Bb Ac A+=,得sin cos sin cos2sin cosA B B A C A+=,即()sin2sin cosA B C A+=,所以1cos2A=,∴3Aπ=,由1sin2S bc A=2bc=.在ABC∆中,由余弦定理可得()22222a b c bc b c bc bc=+-=-+≥=,所以a.(2)因为,M N分别为,AC AB的中点,在ABM∆中,由余弦定理可得222142bBM c bc=+-,在ACN∆中,由余弦定理可得222142cCN b bc=+-,由BMCN=可得2222113142442b cc bc b bc⎛⎫+-=+-⎪⎝⎭,整理得()()820c b c b+-=,所以2c b=,由2bc=,可得1,2b c==.21. 解:(1)因为11111111111121n nn n nnb ba a aa-----=-=------111111nn naa a---=-=-,所以{}n b是等差数列,又143b=-,故()471133nb n n=-+-⋅=-.(2)由(1)得13117373nann=+=+--,要使na最大,则需370n->且37n-最小,所以3n=,故()3max52na a==,要使na最小,则需370n-<且37n-最小,所以2n=,故()2min2na a==-.22.解:(1)由()2*22n nS na n n n N=-+∈,得()()()()211121212n nS n a n n n--=---+-≥相减得()()()()111441141n n n n na na n a n n a n a n--=---+⇒---=-()142n na a n-⇒-=≥故数列{}n a 是以1为首项,以4为公差的等差数列, 所以()()*11443n a n n n N =+-⨯=-∈,()()12*22n n n a a S n n n N +==-∈(2)由知()*21nS n n N n=-∈,所以 ()321213521223n n nS S S S n n+++++=++++-+()2121222n n n n n +-⎡⎤⎣⎦=+=+ 由221124n n +=,得10n =,即存在满足条件的自然数10n = (3)()()2111172121n n c n a n n n n ⎛⎫===- ⎪+++⎝⎭,123111111122231n n T c c c c n n ⎡⎤⎛⎫⎛⎫⎛⎫=++++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦()1112121n n n ⎛⎫=-= ⎪++⎝⎭, ∵()()()()11102221221n n n n T T n n n n ++-=-=>++++,∴1n n T T +<,即n T 单调递增故()1min 14n T T ==,要使32n m T >恒成立,只需1324m <成立,即()8m m Z <∈,故max 7m =.。
舒城中学2017—2018学年度第二学期第一次统考高二文数(时间:120分钟 满分:150分)命题: 审题:一. 选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合要求的,请你将符合要求的项的序号填在括号内) 1.已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R2.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x = 3. 函数)sin()(ϕϖ+=x A x f (其中)0,0,0πϕω<<>>A 的部分 图象如图所示,则下列说法正确的是( )A. A.)(x f 图象可由)8sin(22x y π=图象向左平移4π个单位得到 B. B.)(x f 图象可由)8sin(22x y π=图象向左平移2个单位得到 C. C.)(x f 图象可由)8sin(22x y π=图象向右平移2个单位得到 D. D.)(x f 图象可由)8sin(22x y π=图象向右平移4π个单位得到 4.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ) A .1 B .25. 已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A. 若α,β垂直于同一平面,则α与β平行B. 若αβα⊂⊥m ,,则β⊥mC. 若α,β不平行,则在α内不存在与β平行的直线D. 若m ,n 不平行,则m 与n 不可能垂直于同一平面 不可能垂直于同一平面6.若0a b >>,0c d <<,则一定有( )A .a bd c> B .a bd c< C .a bc d> D . a b c d <7. 过点)0,1(-作抛物线12++=x x y 的切线,则其中一条切线为( ) A. 02y x 2=++B. 03y x 3=+-C. 01y x =++D. 01y x =+-8.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π9.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件 10. ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知0)cos (sin sin sin =-+C C A B ,,2=a 2=c .则=C( ) A .π12B .π6C .π4D .π311.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的()A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等12.在平面直角坐标系中,第一象限有一系列圆n O ,所有圆均与x 轴和直线03=-y x 相 切,且任何相邻两圆外切;圆n O 的半径为n r ,其中01>>+n n r r .若圆1O 的半径11=r , 则数列}{n r 的前n 项和=n S( )A.n)21(2-B.])31(1[23n- C.])41(1[34n-D.])51(1[45n-二.填空题(本大题共4小题,每小题5分,共20分)13. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A = .14. 已知)2,0(πα∈,2tan =α,,则=-)4cos(πα . 15. 记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D ,若直线()1y a x =+与D 有公共点,则a 的取值范围是 .16. 抛物线22(0)y px p =>的焦点为F ,准线为l ,A B 、是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是 .三. 解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤) 17.(本小题满分10分)已知函数x ax x x f 3)(23--=. (Ⅰ)若()f x 在),1[+∞上是增函数,求a 的范围;(Ⅱ)若31-=x 是()f x 的极值点,求()f x 在[1,]a 上的最大值.18.(本小题满分12分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知s i n 4s i n a A b B =,222)ac a b c =--.(I )求cos A 的值;(II )求sin(2)B A -的值.19.(本小题满分12分)设等差数列}{n a 的公差为d ,且1>d ,前n 项和为n S ,等比数列}{n b 的公比为q .已知100,,2,10211====S d q b a b .(Ⅰ)求数列}{n a ,}{n b 的通项公式; (Ⅱ)记nnn b a c =,求数列}{n c 的前n 项和n T .20.(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC AB DC ⊥,∥.(Ⅰ)求证:11D C AC ⊥;(Ⅱ)设1=AD ,且E 是DC 上一动点,当//1E D 平面BD A 1时,求三棱锥BD A E 1-的体积.21.(本小题满分12分)如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于B A ,两点,2l 交椭圆1C 于另一点D . (Ⅰ)求椭圆1C 的方程;(Ⅱ)求ABD ∆面积取最大值时直线1l 的方程.22.(本题满分12分)已知函数()2(1)ln 2x ax a x f x =+++.(Ⅰ)讨论()f x 的单调性; (Ⅱ)当0a <时,证明3()24f x a≤--.高二文科数学参考答案(高二下第一次统考) 1-5:ABBCD 6-10:BDCAB 11-12:DB 13. 5 . 14.10103 . 15. ]4,21[ . 16. 1 17解答:(1)0≤a (2)6-18题解答(Ⅰ)解:由sin 4sin a A b B =,及sin sin a bA B=,得2a b =由222)ac a b c =--,及余弦定理,得2225cos 25b c aA bcac +-===-(Ⅱ)解:由(Ⅰ),可得sin A =代入sin 4sin a A b B =,得sin sin 4a A B b ==由(Ⅰ)知,A为钝角,所以cos B ==于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=, 故sin(2)sin 2cos cos 2sin B A B A B A -=-43(55=⨯-=19解答:(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩ (Ⅱ)1212n n n C --=23413579211 (22222)n n n T --=++++++ ① 234511357921 (2222222)n n n T -=++++++ ② ①-②可得2321111121232 (32222222)n n n n n n T --+=+++++-=- 故12362n n n T -+=-20解答:(1)省略(2)解答:31=v 21题答案:(1)1422=+y x (2)1210-±=x y 22解答:(1)f(x)的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++= 若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为111()ln()1224f a a a -=--- 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x'=-当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<. 所以()g x 在(0,1)单调递增,在(1,)+∞单调递减. 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤ 从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤--。
六安一中2017~2018年度高一年级第二学期期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数列-1,3,-5,7,-9,…的一个通项公式为( )A .21n a n =-B .(1)(12)n n a n =--C .(1)(21)nn a n =-- D .1(1)(21)n n a n +=--2.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2018a 等于( ) A .12-B .12C . -1D .2 3.已知数列{}n a 满足:12a =,0n a >,22*14()n n a a n N +-=∈,那么使10n a <成立的n 的最大值为( )A .4B .5C .24D .254.已知数列{}n a 是公差不为0的等差数列,且1a ,3a ,7a 为等比数列{}n b 的连续三项,则2334b b b b ++的值为( )A .12B .4C .2D 2 5.若01a <<,则不等式1()()0x a x a-->的解集是( )A .1{|}x a x a <<B .1{|}x x a a <<C .1{|}x x a x a <>或D .1{|}x x x a a<>或6.已知,a b R ∈,且a b <,则下列不等式一定成立的是( ) A .220a b -< B .220ab-< C .110a b-> D .cos cos 0a b -< 7.已知点(2,2)A ,若动点(,)P x y 的坐标满足02x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则AP 的最小值为( )A .22.2 C 2 D 58.若20ax bx c ++<的解集为{|13}x x x <->或,则对于函数2()f x cx bx a =++应有( )A .(5)(0)(1)f f f <<-B .(5)(1)(0)f f f <-<C .(1)(0)(5)f f f -<<D .(0)(1)(5)f f f <-<9.已知,a b R ∈,且2a b P +=,222a b Q +=P ,Q 的关系是( )A .P Q ≥B .P Q >C .P Q ≤D .P Q <10.已知α,β满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,则3αβ+的取值范围是( )A .[1,7]B .[5,13]-C .[5,7]-D .[1,13] 11.已知数列{}n a 的通项为258n na n =+,则数列{}n a 的最大值为( )A 258B .7107C .461 D .不存在12.设正数a ,b 满足2b a -<,若关于x 的不等式222(4)40a x bx b -+-<的解集中的整数解恰有4个,则a 的取值范围是( )A .(2,3)B .(3,4)C .(2,4)D .(4,5) 二、填空题:本大题共4小题,每小题5分,共20分.13.中国古代数学著作《算法统宗》有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后达到目的地.”则该人最后一天走的路程为 里. 14.已知点(1,2)在直线2(0)x yab a b+=>上,则2a b +的最小值为 . 15.不等式组210y x y kx y ≤-+⎧⎪≤-⎨⎪≥⎩所表示的平面区域的面积等于14,则k = .16.已知,m n R ∈,若关于实数x 的方程2(1)10x a x a b +++++=的两个实根1x ,2x 满足101x <<,21x >,则ba的取值范围为 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.若221a x =+,22b x x =+,3c x =--,比较a ,b ,c 的大小.18.已知函数22()log (611)f x ax ax =-+.(1)当1a =时,求不等式2()log 3f x ≥的解集; (2)若()f x 的定义域为R ,求a 的取值范围.19.某研究所计划利用“神舟十号”宇宙飞船进行新产品搭载实验,计划搭载新产品甲,乙,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:产品甲(件)产品乙(件)研制成本与搭载费用之和(万元/件)200300计划最大资金额3000元产品重量(千克/件) 10 5最大搭载重量110千克预计收益(万元/件)160120试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?20.各项均为正数的等比数列{}n a 中,11a =,3564a a =,且*23log 2()n an b n N =+∈.(1)求数列{}n a ,{}n b 的通项公式; (2)令*()nn nb c n N a =∈,求数列{}n c 的前n 项和n T . 21.(1)若关于x 的不等式2(2)20x a x a -++<的解集是[1,)+∞的子集,求实数a 的取值范围;(2)已知a ,b ,c 均为正数,且9()abc a b =+,求a b c ++的最小值.22.已知数列{}n a 中,112a =,其前n 项的和为n S ,且满足22(2)21n n n S a n S =≥-.(1)求证:数列1{}nS 是等差数列; (2)证明:123111123n S S S S n+++⋅⋅⋅+<.六安一中2017~2018年度高一年级第二学期期末考试数学试卷(理科)参考答案一、选择题1-5: CBCAC 6-10: BCDCA 11、12:CC 二、填空题13. 6 14. 4 15. 1 16. 1(2,)2-- 三、解答题17.解:∵221a x =+,22b x x =+,3c x =--,∴22(21)(2)a b x x x -=+-+2221(1)0x x x =-+=-≥,即a b ≥,2(2)(3)b c x x x -=+---223333()024x x x =++=++>,即b c >,综上可得:a b c ≥>.18.解:(1)1a =时,22()log (611)f x x x =-+,则222()log 3log (611)f x x x ≥⇔-+2log 3≥,即26113x x -+≥,解得2x ≤或4x ≥.∴不等式2()log 3f x ≥的解集为(,2][4,)-∞+∞;(2)∵()f x 的定义域为R ,∴26110ax ax -+>对任意x R ∈恒成立, 当0a >时,236440a a ∆=-<,解得1109a <<.又0a =成立, ∴a 的取值范围是11[0,)9. 19.解:设搭载产品甲x 件,产品乙y 件,预计总收益160120z x y =+.则2003003000105110,x y x y x N y N +≤⎧⎪+≤⎨⎪∈∈⎩,(或写成23302220,0,x y x y x y x y Z+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩)作出可行域,如图.作出直线0l :430x y +=并平移,由图象得,当直线经过M 点时z 能取得最大值,2330222x y x y +=⎧⎨+=⎩,解得(9,4)M .∴max 160912041920z =⨯+⨯=(万元).答:搭载产品甲9件,产品乙4件,可使得总预计收益最大,为1920万元.20.解:(1)12n n a -=,31n b n =-.(2)1312n n n n b n c a --==,数列{}n c 的前n 项和21258311222n n n T --=+++⋅⋅⋅+, ∴21125343122222n n n n n T ---=++⋅⋅⋅++, ∴21111113123()22222n n n n T ---=+++⋅⋅⋅+-111(1)3122231212n n n ---=+⨯--113123(1)22n n n --=+--3552n n +=-.∴135102n n n T -+=-.21.解:(1)由题(2)()0x x a --<,当2a ≥时,不等式的解集为{|2}x x a <<,此时显然是[1,)+∞的子集,当2a <时,不等式的解集为{|2}x a x <<,要使其为[1,)+∞的子集,∴12a ≤<,综上,[1,)a ∈+∞.(2)根据题意,9()abc a b =+,则9a bc ab+=⨯, 则()9a ba b c a b ab+++=++⨯99992a b a b a b a b =+++≥⨯⨯6612=+=,当且仅当3a b ==时,等号成立;则a b c ++的最小值为12.22.证明:(1)当2n ≥时,21221nn n n S S S S --=-,整理得:112(2)n n n n S S S S n ---=⋅≥,1112n n S S --=,从而1{}nS 构成以2为首项,2为公差的等差数列. (2)由(1)可知,111(1)22n n n S S ++-⨯=,∴12n S n=. ∴当1n =时,1112n S n =<, 当2n ≥时,2111122(1)n S n n n n =<⋅-111()21n n=--, ∴12311123n S S S S n +++⋅⋅⋅+1111111(1)222231n n <+-+-+⋅⋅⋅+--1112n<-<. 另解:当2n ≥时,2211111()22(1)411n n n n <=---+ ∴1111111(12432435<+-+-+-1111)211n n n n +⋅⋅⋅+-+---+ 11111(1)2421n n =++--+ 1117(1)12428<++=<.。
安徽省天一大联考2017-2018学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2. 下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3. 某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4. 将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()。
20172018学年高一下学期期中试题数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知则角是()A第四象限角 B第三象限角 C第二象限角 D第一象限角2.的值为()A B C D3.函数y=2x,x的最大值是()A B C D4.已知扇形的面积为,半径是2,则扇形的圆心角是()A B C D5.已知直线3x+4y5=0与圆相交于A,B两点,则弦AB的长为()A B C D 16.函数f(x)=的单调减区间()A(,),k B(,),kC(,),k D(,),k7.已知点M,N在圆上,且点M,N关于直线x对称,则该圆的半径为()A 2BC 1D 3x 300450o y 8.在,,则角C= ( )A C D9.若角的终边经过P (),则 ( ) A B C1 D10.已知圆的方程是则在y 轴上截距为的切线方程为 ( ) A y=x+ B y=x+ C y=x+ D x=111.,且,则 ( )A 或B 或CD 12.若是第二象限角,且,则= ( )A B 1 C D二、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=+1的值域是__________14.如图所示,终边落在阴影部分的角的集合是__________ 15.已知=,,则=_______16.在函数①y=,②y=,③y=,④y=,中,最小正周期为 的所有函数为_________三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知圆C的圆心在直线xy=0上,且经过A(2,3),B(2,5)。
(1)求圆C的一般式方程;(2)求过B点圆C的切线m方程。
18. (12分)设函数f(x)= (0),且y= f(x)的图像的一条对称轴是直线x=.(1)求(2)求函数y= f(x)的单调递增区间。
安徽省六安市第一中学2016-2017学年高二下学期开学考试政治试题时间:90分钟总分:100分第1卷(选择题共48分)一、下列每小题四个选项,只有一个最符合题(每题2分,共48分)l.“杀死癌细胞一点都不难,难就难在捣毁癌细胞的滋生温床”,基于这一理念,广州某医院采取微创靶向下的整合技术,取得了不少成绩。
这表明( )A.方法论决定世界观 B.哲学来源于人们形成的世界观和方法论C.世界观决定方法论 D.哲学是对具体生活的概括和升华2.“中医”用肝、心、脾、肺、肾替换术、火、土、金、水,脏腑被赋予五行的基本功能与属性,脏器之间也被赋予五行之间的动力学关系。
这样,脏腑结构、功能与关系就成了人体组成与功能的基本模型,一切病理、生理过程都可从这个模型功能状态变化中得到描述与解释。
可见“中医”理论( )①属于朴素唯物主义②属于形而上学唯物主义③蕴含了辩证法思想④犯了主观唯心主义错误A.①②B.②③C.①③D.③④3.自2013年启动第一次全国地理国情普查工作以来,截至2015年初,全国普查数据生产进度达到97%。
普查不仅要进行山川河流、住宅道路的基础测绘,还要与经济、社会、生态发展联系起来,做成动态地图。
考察的这些要素( )①是人类社会赖以生存和发展的物质生活条件②在人类社会形成和发展中起着决定性的作用③它们具有的客观性体现了人类社会的物质性④它们是创造人类社会的必不可少的唯一要素A.①② B.②④ C.③④ D.①③4.“世界比我们伟大,不会按我们的想法行事;我们比世界渺小,必须遵循它的法则”本杰明·惠奇科特这句话告诉我们( )①人在规律面前无能为力②规律具有客观性和普遍性③规律是可以被人所认识的④发挥主观能动性必须遵循规律A.①② B.②④ C.①④ D.③④5.日前,国家发改委政策研究室有关负责人表示,在市场环境趋紧、要素成本上升的背景下,部分企业生产经营困难,产业结构调整已到了不进则退的窗口期。
2017-2018学年度人教版高一第一学期期末质量检测语文试题含答案2017-2018学年高一第一学期期末质量检测语文科试卷考试时间:150分钟;满分:150分;共23小题友情提示:请将答案填涂在答题卡的相应位置上,答在本试卷上一律无效一、现代文阅读(每小题3分,共9分)读下面文字,完成1-3题。
很多人说:什么是意境?意境就是“情”“景”交融。
其实这种解释应该是从近代开始的。
XXX在《人间词话》中所使用的“意境”或“境界”,他的解释就是情景交融。
但是在中国传统美学中,情景交融所规定的是“意象”,而不是“意境”。
中国传统美学认为艺术的本体就是意象,任何艺术作品都要创造意象,都应该情景交融,而意境则不是任何艺术作品都具有的。
意境除了有意象的一般规定性之外,还有自己的特殊规定性,意境的内涵大于意象,意境的外延小于意象。
那么意境的特殊规定性是什么呢?唐代XXX有句话:“境生于象外。
”“境”是对于在时间和空间上有限的“象”的突破,只有这种象外之“境”才能体现作为宇宙的本体和生命的“道”。
从审美活动的角度看,所谓“意境”,就是超越具体的有限的物象、事件、场景,进入无限的时间和空间,从而对整个人生、历史、宇宙获得一种哲理性的感受和领悟。
西方古代艺术家,他们给自己提出的任务是要再现一个具体的物象,所以他们,比如古希腊雕塑家追求“美”,就把人体刻画得非常逼真、非常完美。
而中国艺术家不是局限于刻画单个的人体或物体,把这个有限的对象刻画得很逼真、很完美。
相反,他们追求一种“象外之象”、“景外之景”。
中国园林艺术在审美上的最大特点也是有意境。
中国古典园林中的楼、台、亭、阁,它们的审美价值主要不在于这些建筑本身,而是如同XXX《兰亭集序》所说,在于可使人“仰观宇宙之大,俯察品类之盛。
我们生活的世界是一个成心味的世界。
XXX有两句诗说得好:“此中有真意,欲辩已忘言。
”艺术就是要去寻找、发现、体验生活中的这种意味。
成心境的作品和普通的艺术作品在这一点的区别,就在于它不但揭示了生活中某一个具体事物或具体事件的意味,并且超出了具体的事物和事件,从一个角度揭示了整个人生的意味。
2017-2018学年安徽省宿州市十三所重点中学高一(下)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,选择一个符合题目要求的选项1.数列2,5,8,11,…,则23是这个数列的()A.第5项B.第6项C.第7项D.第8项2.不等式≥2的解集为()A.[﹣1,0)B.[﹣1,+∞)C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(0,+∞)3.(5分)(2013罗湖区校级二模)已知a,b,c满足c<b<a且ac<0,则下列选项中一定成立的是()A.ab>ac B.c(b﹣a)<0 C.cb2<ab2D.ac(a﹣c)>0 4.(5分)(2010广东模拟)等差数列a n中,已知前15项的和S15=90,则a8等于()A.B.12 C.D.65.(5分)(2018春大连校级期末)已知点(﹣3,﹣1)和(4,﹣6)在直线3x﹣2y﹣a=0的两侧,则实数a的取值范围为()A.(﹣24,7)B.(﹣∞,﹣24)∪(7,+∞)C.(﹣7,24)D.(﹣∞,﹣7)∪(24,+∞)6.(5分)(2012秋西峰区校级期末)在△ABC中,若,则最大角的余弦值是()A.B.C.D.7.(5分)(2014秋芜湖期末)在坐标平面上,不等式组所表示的平面区域的面积为()A.B.C.D.28.△ABC中,a,b,c分别是内角A,B,C的对边,且cos2B+3cos(A+C)+2=0,b=,则等于()A.B.C.D.9.在等比数列{a n}中,若a n>0,且a3,a7是x2﹣32x+64=0的两根,则log2a1+log2a2+log2a3+…+log2a9=()A.27 B.36 C.18 D.910.(5分)(2012井冈山市模拟)锐角三角形ABC中,a b c分别是三内角A B C的对边设B=2A,则的取值范围是()A.(﹣2,2)B.(0,2)C.(,2)D.(,)11.设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是()A.(0,1)B.(﹣∞,0)C.(﹣∞,1)D.(﹣∞,)12.(5分)(1992云南)设{a n}是由正数组成的等比数列,公比q=2,且a1a2a3…a30=230,那么a3a6a9…a30等于()A.210B.220C.216D.215二、填空题:本大题共4小题,每小题5分,共20分13.(5分)(2014秋汪清县校级期末)不等式ax2+bx+2>0的解集是(﹣,),则a+b 的值是.14.等差数列{a n}的前n项和为S n,若S2=3,S3=3,则S5=.15.若不等式(m2+4m﹣5)x2﹣4(m﹣1)x+3>0一切实数x恒成立,则实数m的取值范围是.16.已知定义:在数列{a n}中,若a﹣a=p(n≥2,n∈N*,p为常数),则称数列{a n}为等方差数列,下列判断:①若{a n}是“等方差数列”,则数列{a n2}是等差数列;②{(﹣1)n}是“等方差数列”;③若{a n}是“等方差数列”,则数列{a kn}(k∈N*,k为常数)不可能还是“等方差数列”;④若{a n}既是“等方差数列”,又是等差数列,则该数列是常数列.其中正确的结论是.(写出所有正确结论的编号)三、解答题:本大题共6小题,共70分。