当前位置:文档之家› 区域填充种子算法实现

区域填充种子算法实现

区域填充种子算法实现
区域填充种子算法实现

实验三区域填充种子算法实现

实验目的:

1、熟练在Visual C++中程序实现及调试的能力。

2、通过程序的设计熟练区域填充种子算法过程;

3、掌握堆栈在数据结构中的应用

实验内容:

1、visual c++中菜单的修改,点的输入及鼠标函数的控制;

2、复习数据结构中堆栈的建立,入栈,出栈等函数;

3、实现整个多边形的区域填充种子算法,与扫描转换算法进行区分;

实验步骤:

预处理:多边形点列的输入,存储于数组中P[100],种子点的输入,确定为point(x,y)

确定多边形的边界色(旧画笔色),初始色(背景色),填充色(新画笔色);

数据结构的建立:建立堆栈,包括数组stack[100],及一个指标top,用来指向当前堆栈的最外面的栈口的元素。

步骤:1、堆栈置为空,top=0;

2、将初始的种子点point进栈,push(x,y);

3、填色堆栈非空即top>0时,一直循环下列步骤

取栈顶的元素,出栈pop(x,y),savex=x;

从当前点开始沿当前扫描线往右检验,若有未填新色的,则填色。

然后同样往左检验。

当前扫描线俩个方向都检查完后,检验上一条扫描线y=y+1; 若有未填新色的,则把所有未填新色区间的右端点压入堆栈。 同理检验下一条扫描线y=y-2;

实验指导:

一、 在实验二的基础上进行编程 ;

(1) 引入实验二代码

scanline.dsw

二、 编辑菜单资源

选中窗口左边栏的“ResourceView ”,其中的“Menu ”,双击“IDR_MAINFRAME ”,右边即为菜单,在菜单上空处双击,出项如图所示窗口,其中弹出不选中;

如上,同样创建其余菜单项。(如下表);

三、 添加消息处理函数

由菜单的“查看”,“建立类向导”,打开ClassWizard (也可CTRL+W )为应用程序添加与菜单项相关的消息处理函数,ClassName 栏选中CScanLineView 类,根据表建立。

输入菜单项名称,(如显示多边形)

双击,出现如下窗口

四、 程序结构代码 1、

添加全局变量

在CScanLineView.h 文件中相应位置添加如下代码:(红体为需加入代码)

// Implementation public:

CPoint P[100], pt, stack[100]; int top, flag , num ;

说明: pt 定义为全局变量,为种子点坐标; stack[100]为堆栈;

top 为堆栈的最外的元素的位子; flag 为指标,判别flag=1时鼠标左键按下可

取种子点。

2、 调用函数的建立。

如下图所示,右键点击左边栏的CScanLineView 类,选中“Add Member Function ”

;

出现如下所示窗口,

按下列表格重复输入函数,后确定;

3、主程序生成,在CScanLineView.cpp文件相应位置添加如下代

码。

(注意大小写,及符号)

文件最上面一长串蓝体字下面加入:

#define oldcolor RGB(0,0,0)

#define newcolor RGB(255,0,0)

CScanLineView::CScanLineView()

{

num=0;

flag=0;

}

void CScanLineView::OnLButtonDown(UINT nFlags, CPoint point) //鼠标映射函数{

CDC *pdc=GetDC();

if(flag==1) { pt=point;

pdc->FillSolidRect(point.x-3,point.y-3,3,3,newcolor);

flag=0; num=0;

}

else { num++; P[num]=point;

pdc->FillSolidRect(point.x-3,point.y-3,3,3,oldcolor);

if(num!=1) { pdc->MoveTo(P[num-1]); pdc->LineTo(point); }

}

CView::OnLButtonDown(nFlags, point);

}

/////////////////////

void CScanLineView::OnScanLine()

{

CDC *pdc=GetDC();

书中P29页代码;

}

void CScanLineView::setstackempty()

{

top=0;

}

void CScanLineView::stackpush(seed pt)

{

stack[top+1]=pt;

top++;

}

bool CScanLineView::isstackempty()

{

if(top==0) return TRUE;

else return FALSE;

}

void CScanLineView::stackpop()

{

pt=stack[top];

top--;

}

void CScanLineView::Ongetseed()

{

flag=1;

}

说明:书29页代码中,所有的drawpixel改为pdc->SetPixel 画笔使用:

CPen RenPen,*OldPen;

RedPen.CreatePen(PS_SOLID,1,RGB(255,0,0));

OldPen=pdc->SetlectObject(&RedPen);

…….

Pdc->SellectObject(OldPen);

RedPen.DelectObject();

VC中自带的多边形填充函数pdc->Polygon(…);

扫描线填充算法讲解

扫描线算法(S c a n-L i n e F i l l i n g) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指 定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏和三维CAD软件的渲染等等。 对矢量多边形区域填充,算法核心还是求交。《计算几何与图形学有关的几种常用算法》 一文给出了判断点与多边形关系的算法――扫描交点的奇偶数判断算法,利用此算法可以 判断一个点是否在多边形内,也就是是否需要填充,但是实际工程中使用的填充算法都是 只使用求交的思想,并不直接使用这种求交算法。究其原因,除了算法效率问题之外,还 存在一个光栅图形设备和矢量之间的转换问题。比如某个点位于非常靠近边界的临界位置,用矢量算法判断这个点应该是在多边形内,但是光栅化后,这个点在光栅图形设备上看就 有可能是在多边形外边(矢量点没有大小概念,光栅图形设备的点有大小概念),因此, 适用于矢量图形的填充算法必须适应光栅图形设备。 2.1扫描线算法的基本思想 扫描线填充算法的基本思想是:用水平扫描线从上到下(或从下到上)扫描由多条首尾相 连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列交点。将这些交点按照 x坐标排序,将排序后的点两两成对,作为线段的两个端点,以所填的颜色画水平直线。 多边形被扫描完毕后,颜色填充也就完成了。扫描线填充算法也可以归纳为以下4个步骤:(1)求交,计算扫描线与多边形的交点 (2)交点排序,对第2步得到的交点按照x值从小到大进行排序; (3)颜色填充,对排序后的交点两两组成一个水平线段,以画线段的方式进行颜色填充; (4)是否完成多边形扫描?如果是就结束算法,如果不是就改变扫描线,然后转第1步 继续处理; 整个算法的关键是第1步,需要用尽量少的计算量求出交点,还要考虑交点是线段端点的 特殊情况,最后,交点的步进计算最好是整数,便于光栅设备输出显示。 对于每一条扫描线,如果每次都按照正常的线段求交算法进行计算,则计算量大,而且效 率底下,如图(6)所示: 图(6)多边形与扫描线示意图

区域填充算法运行代码

///

///扫描线填充算法填充触发事件 /// /// /// private void scanLineFillingToolStripMenuItem_Click(object sender, EventArgs e) { slf.ScanLinePolygonFill(P,g,XiangSu); } private void label2_Click(object sender, EventArgs e) { } private void四联通填充ToolStripMenuItem_Click(object sender, EventArgs e) { tempp.X = tempP[3].X + XiangSu;//选取第4个点内侧(随机猜测) tempp.Y = tempP[3].Y + XiangSu; checkBox.Enabled = false;//让绘制过程中不能改变选择 do_check();//也要检查一遍,不然会出现错误 FloodSeedFill(tempp); checkBox.Enabled = true;//恢复 } /// ///初始化新边表 ///算法通过遍历所有的顶点获得边的信息,然后根据与此边有关的前后两个顶点的情况 ///确定此边的ymax是否需要-1修正。ps和pe分别是当前处理边的起点和终点,pss是起 ///点的前一个相邻点,pee是终点的后一个相邻点,pss和pee用于辅助判断ps和pe两个 ///点是否是左顶点或右顶点,然后根据判断结果对此边的ymax进行-1修正,算法实现非 ///常简单,注意与扫描线平行的边是不处理的,因为水平边直接在HorizonEdgeFill() ///函数中填充了。 /// private void InitScanLineNewEdgeTable(List[] NET, List Q, int ymin, int ymax) { List temp = new List(); EDGE e; for (int i = 0; i < Q.Count; i++) { Point ps = Q[i];

计算机图形学 区域填充算法的实现

实验四区域填充算法的实现 班级 08信计2班学号 20080502088 姓名许延恒分数 一、实验目的和要求: 1、理解区域的表示和类型。 2、能正确区分四连通和八连通的区域 3、了解区域填充的实验原理。 4、利用C++实现区域填充的递归算法。 二、实验内容: 1假设在多边形内有一像素已知,由此出发利用连通性找到区域内所有像素。 2 取(x,y)为种子点将整个区域填充为新的颜色。 3 进行递归填充。 三、实验结果分析 区域填充属性包括填充样式,填充颜色和填充图案的类型。C语言中定义了某种图形后,即可调用-floodfill函数,对指定区域进行填充 . 程序代码 #include #include #include void floodfill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); floodfill4(x,y+1,oldcolor,newcolor); floodfill4(x,y-1,oldcolor,newcolor); floodfill4(x-1,y,oldcolor,newcolor); floodfill4(x+1,y,oldcolor,newcolor); } } main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode,"");

实验三 区域填充算法的实现

实验三区域填充算法的实现 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0或win-TC实现区 域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 四连通图的实现: 程序代码: #include #include #include #include void BoundaryFill4(int x,int y,int Boundarycolor,int newcolor) { if(getpixel(x,y) != newcolor && getpixel(x,y) !=Boundarycolor) { putpixel(x,y,newcolor); Sleep(1); BoundaryFill4(x-1,y,Boundarycolor,newcolor); BoundaryFill4(x,y+1,Boundarycolor,newcolor); BoundaryFill4(x+1,y,Boundarycolor,newcolor); BoundaryFill4(x,y-1,Boundarycolor,newcolor); } } void polygon(int x0,int y0,int a,int n,float af) { int x,y,i; double dtheta,theta;

多边形区域填充算法

13. 设五边形的五个顶点坐标为(10, 10),(15, 5),(12, 5),(8, 2)和(4, 5),利用多边形区域填充算法,编一程序生成一个实心图。 解:假设以上五个顶点依次对应编号A-B-C-D-E,首先计算得到ET表: 6-10 5 4 3 2 1 该多边形的AET指针的内容为: 1 AET为空 2 3 4 1 2 3 4 5 6 7 8 9 10 01234567891011121314 1516

5 6 7 8 9 10 具体编程实现如下: 第1步:(1) 根据输入的五个顶点坐标找到y 值最小的点(例如点D ,此时y=2),并找到与D 有边关系的两个顶点(此时为E 和C),在y=2处建立ET 边表记录(ymax 、xi 和m 值均可通过顶点坐标间的计算得到,例如DE 边的建立,特别注意:当D 点和E 点y 坐标值相同时,也即是DE 与x 轴平行,该边不能计入ET 边表),之后标记D 点被访问过;(2) 排除访问过的点以及和该点相关联的边,重复(1)直至将ET 表建立完善。 [注]边关系的建立可通过邻接矩阵的数据结构实现,权值可以为该矩阵行编号对应点的y 坐标值,ET 边表采用邻接表的数据结构 第2步:根据ET 表构建AET 表,并逐行完成多边形填充,具体的C++代码如下: (1) 建立头文件base_class.h ,主要是边表结点结构体和ET 边表类的实现 enum ResultCode{Success, Failure}; template struct Enode { Enode() {next=NULL;} Enode(T pymax, float pxi, float pm, Enode *pnext) { ymax=pymax; xi=pxi; m=pm; next=pnext; } T ymax, xi; //ymax 表示最大的y 值,xi 表示最底端点的x 坐标值 float m; //m 表示斜率的倒数 Enode *next; }; //定义了ET 表和AET 表中结点的结构体

区域填充算法的实现

实验四区域填充算法的实现 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0(及EasyX_2011版) 实现区域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 1、以上各种算法相应代码及运行结果如下: 程序代码: #include #include #include void FloodFill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); FloodFill4(x-1,y,oldcolor,newcolor); FloodFill4(x,y+1,oldcolor,newcolor); FloodFill4(x+1,y,oldcolor,newcolor); FloodFill4(x,y-1,oldcolor,newcolor); } } void main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice();

图形学种子填充算法

/种子填充算法 void CZhztchView::boundaryfill4(int x, int y, int boundarycolor, int newcolor) { int color; CClientDC dc(this); //获取客户区设备描述表 color=dc.GetPixel(x,y); if(color!=newcolor&&color!=boundarycolor) { dc.SetPixel(x,y,newcolor); boundaryfill4(x,y+1,boundarycolor,newcolor); boundaryfill4(x,y-1,boundarycolor,newcolor); boundaryfill4(x-1,y,boundarycolor,newcolor); boundaryfill4(x+1,y,boundarycolor,newcolor); } } ///////////////////////////////////////////////////////////////// /////////////// //扫描线填充算法 void CZhztchView::OnScanfill() {

RedrawWindow(); CDC* pDC=GetDC(); CPen newpen(PS_SOLID,3,RGB(255,0,0)); CPen *old=pDC->SelectObject(&newpen); spt[0]=CPoint(100,100); //绘制多边形区域 spt[1]=CPoint(300,100); spt[2]=CPoint(250,250); spt[3]=CPoint(100,250); spt[4]=CPoint(150,200); spt[5]=CPoint(90,180); spt[6]=CPoint(150,150); spt[7]=CPoint(100,100); pDC->Polyline(spt,8); //pDC->SelectObject(old); //ReleaseDC(pDC); // TODO: Add your command handler code here //CDC* pDC=GetDC(); CPen newpen2(PS_SOLID,1,RGB(0,255,0)); CPen *old2=pDC->SelectObject(&newpen2); int j,k,s = 0;

扫描线填充算法讲解

扫描线算法(Scan-Line F illing) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏 和三维CAD软件的渲染等等。 对矢量多边形区域填充,算法核心还是求交。《计算几何与图形学有关的几种 常用算法》一文给出了判断点与多边形关系的算法――扫描交点的奇偶数判断 算法,利用此算法可以判断一个点是否在多边形内,也就是是否需要填充,但 是实际工程中使用的填充算法都是只使用求交的思想,并不直接使用这种求交 算法。究其原因,除了算法效率问题之外,还存在一个光栅图形设备和矢量之 间的转换问题。比如某个点位于非常靠近边界的临界位置,用矢量算法判断这 个点应该是在多边形内,但是光栅化后,这个点在光栅图形设备上看就有可能 是在多边形外边(矢量点没有大小概念,光栅图形设备的点有大小概念),因此,适用于矢量图形的填充算法必须适应光栅图形设备。 2.1扫描线算法的基本思想 扫描线填充算法的基本思想是:用水平扫描线从上到下(或从下到上)扫描由 多条首尾相连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列 交点。将这些交点按照x坐标排序,将排序后的点两两成对,作为线段的两个 端点,以所填的颜色画水平直线。多边形被扫描完毕后,颜色填充也就完成了。扫描线填充算法也可以归纳为以下4个步骤: (1)求交,计算扫描线与多边形的交点 (2)交点排序,对第2步得到的交点按照x值从小到大进行排序; (3)颜色填充,对排序后的交点两两组成一个水平线段,以画线段的方式进 行颜色填充; (4)是否完成多边形扫描?如果是就结束算法,如果不是就改变扫描线,然 后转第1步继续处理; 整个算法的关键是第1步,需要用尽量少的计算量求出交点,还要考虑交点是 线段端点的特殊情况,最后,交点的步进计算最好是整数,便于光栅设备输出 显示。

区域填充的扫描线算法

计算机图形学 ——区域填充的扫描线算法 NORTHWESTUNIVER SITY

一、实验目的 1.通过实验,进一步理解和掌握几种常用多边形填充算法的基本原理 2.掌握多边形区域填充算法的基本过程 3.掌握在C/C++环境下用多边形填充算法编程实现指定多边形的填充。 4.利用TC2.0编写区域填充的扫描线算法。 二、实验内容 算法基本思想:首先填充种子点所在扫描线上位于区域内的区段,然后确定与该区段相邻的上下两条扫描线上位于区域内的区段,并依次将各区段的起始位置保存, 这些区段分别被用区域边界色显示的像素点所包围。随后,逐步取出一开始点并重复上述过程,直到所保存各区段都填充完毕为止。 算法描述:扫描线填充算法一般包括四个步骤:求交、排序、交点配对、区域填充。正确求得扫描线与区域填内外轮廓线的交点是算法成败的关键问题。另一方面,采用合适的数据结构又可以简化操作、提高算法的效率。本论文由于采用链表结构记录轮廓线和交点,无需焦点排序的过程,因而提高了算法效率。扫描线来源于光栅显示器的显示原理:对于屏幕上所有待显示像素的信息,将这些信息按从上到下、自左至右的方式显示。 扫描线多边形区域填充算法是按扫描线顺序,计算扫描线与多边形的相交区间,再用要求的颜色显示这些区间的象素,即完成填充工作。区间的端点可以通过计算扫描线与多边形边界线的交点获得。对于一条扫描线,多边形的填充过程可以分为四个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把所有交点按x值递增顺序排序; (3)配对:第一个与第二个,第三个与第四个等等;每对交点代表扫描线与多边形的一个相交区间; (4)填色:把相交区间内的象素置成多边形颜色; 三、实验原理 扫描线填充算法的基本过程如下:当给定种子点(x,y)时,首先填充种子点所在扫描线上的位于给定区域的一个区段,然后确定与这一区段相连通的上、下两条扫描线上位于给定区域内的区段,并依次保存下来。反复这个过程,直到填充结束。 区域填充的扫描线算法可由下列四个步骤实现: (1)初始化:堆栈置空。将种子点(x,y)入栈。 (2)出栈:若栈空则结束。否则取栈顶元素(x,y),以y作为当前扫描线。 (3)填充并确定种子点所在区段:从种子点(x,y)出发,沿当前扫描线向左、右两个方向填充,直到边界。分别标记区段的左、右端点坐标为xl和xr。 (4)并确定新的种子点:在区间[xl,xr]中检查与当前扫描线y上、下相邻的两条

区域填充种子算法实现

实验三区域填充种子算法实现 实验目的: 1、熟练在Visual C++中程序实现及调试的能力。 2、通过程序的设计熟练区域填充种子算法过程; 3、掌握堆栈在数据结构中的应用 实验内容: 1、visual c++中菜单的修改,点的输入及鼠标函数的控制; 2、复习数据结构中堆栈的建立,入栈,出栈等函数; 3、实现整个多边形的区域填充种子算法,与扫描转换算法进行区分; 实验步骤: 预处理:多边形点列的输入,存储于数组中P[100],种子点的输入,确定为point(x,y) 确定多边形的边界色(旧画笔色),初始色(背景色),填充色(新画笔色); 数据结构的建立:建立堆栈,包括数组stack[100],及一个指标top,用来指向当前堆栈的最外面的栈口的元素。 步骤:1、堆栈置为空,top=0; 2、将初始的种子点point进栈,push(x,y); 3、填色堆栈非空即top>0时,一直循环下列步骤 取栈顶的元素,出栈pop(x,y),savex=x;

从当前点开始沿当前扫描线往右检验,若有未填新色的,则填色。 然后同样往左检验。 当前扫描线俩个方向都检查完后,检验上一条扫描线y=y+1; 若有未填新色的,则把所有未填新色区间的右端点压入堆栈。 同理检验下一条扫描线y=y-2; 实验指导: 一、 在实验二的基础上进行编程 ; (1) 引入实验二代码 scanline.dsw 二、 编辑菜单资源

选中窗口左边栏的“ResourceView ”,其中的“Menu ”,双击“IDR_MAINFRAME ”,右边即为菜单,在菜单上空处双击,出项如图所示窗口,其中弹出不选中; 如上,同样创建其余菜单项。(如下表); 三、 添加消息处理函数 由菜单的“查看”,“建立类向导”,打开ClassWizard (也可CTRL+W )为应用程序添加与菜单项相关的消息处理函数,ClassName 栏选中CScanLineView 类,根据表建立。 输入菜单项名称,(如显示多边形) 双击,出现如下窗口

扫描线种子填充算法

扫描线种子填充算法 扫描线种子填充算法的基本过程如下:当给定种子点(x, y)时,首先分别向左和向右两个方向填充种子点所在扫描线上的位于给定区域的一个区段,同时记下这个区段的范围[xLeft, xRight],然后确定与这一区段相连通的上、下两条扫描线上位于给定区域内的区段,并依次保存下来。反复这个过程,直到填充结束。 扫描线种子填充算法可由下列四个步骤实现: (1) 初始化一个空的栈用于存放种子点,将种子点(x, y)入栈; (2) 判断栈是否为空,如果栈为空则结束算法,否则取出栈顶元素作为当前扫描线的种子点(x, y),y是当前的扫描线; (3) 从种子点(x, y)出发,沿当前扫描线向左、右两个方向填充,直到边界。分别标记区段的左、右端点坐标为xLeft和xRight; (4) 分别检查与当前扫描线相邻的y - 1和y + 1两条扫描线在区间[xLeft, xRight]中的像素,从xLeft开始向xRight方向搜索,若存在非边界且未填充的像素点,则找出这些相邻的像素点中最右边的一个,并将其作为种子点压入栈中,然后返回第(2)步; 这个算法中最关键的是第(4)步,就是从当前扫描线的上一条扫描线和下一条扫描线中寻找新的种子点。如果新扫描线上实际点的区间比当前扫描线的[xLeft, xRight]区间大,而且是连续的情况下,算法的第(3)步就处理了这种情况。如图所示: 新扫描线区间增大且连续的情况

假设当前处理的扫描线是黄色点所在的第7行,则经过第3步处理后可以得到一个区间[6,10]。然后第4步操作,从相邻的第6行和第8行两条扫描线的第6列开始向右搜索,确定红色的两个点分别是第6行和第8行的种子点,于是按照顺序将(6, 10)和(8, 10)两个种子点入栈。接下来的循环会处理(8, 10)这个种子点,根据算法第3步说明,会从(8, 10)开始向左和向右填充,由于中间没有边界点,因此填充会直到遇到边界为止,所以尽管第8行实际区域比第7行的区间[6,10]大,但是仍然得到了正确的填充。 如果新扫描线上实际点的区间比当前扫描线的[xLeft, xRight]区间大,而且中间有边界点的情况,算法又是怎么处理呢?算法描述中虽然没有明确对这种情况的处理方法,但是第4步确定上、下相邻扫描线的种子点的方法,以及靠右取点的原则,实际上暗含了从相邻扫描线绕过障碍点的方法。如下图所示: 新扫描线区间增大且不连续的情况 算法第3步处理完第5行后,确定了区间[7, 9],相邻的第4行虽然实际范围比区间[7, 9]大,但是因为被(4, 6)这个边界点阻碍,使得在确定种子点(4, 9)后向左填充只能填充右边的第7列到第10列之间的区域,而左边的第3列到第5列之间的区域没有填充。虽然作为第5行的相邻行,第一次对第4行的扫描根据靠右原则只确定了(4, 9)一个种子点。但是对第3行处理完后,第4行的左边部分作为第3行下边的相邻行,再次得到扫描的机会。第3行的区间是[3, 9],向左跨过了第6列这个障碍点,第2次扫描第4行的时候就从第3列开始,向右找,可以确定种子点(4, 5)。这样第4行就有了两个种子点,就可以被完整地填充了。 由此可见,对于有障碍点的行,通过相邻边的关系,可以跨越障碍点,通过多次扫描得到完整的填充,算法已经隐含了对这种情况的处理。扫描线种子填充算法的实现如下:

计算机图形学-区域填充的扫描线算法

计算机图形学——区域填充的扫描线算法 一.实验名称: 区域填充的扫描线算法 二.实验目的: 1、理解区域填充扫描线算法的原理; 2、实现区域填充的扫描线算法并测试; 三.算法原理: 算法基本思想: 首先填充种子点所在扫描线上位于区域内的区段,然后确定与该区段相邻的上下两条扫描线上位于区域内的区段,并依次将各区段的起始位置保存, 这些区段分别被用区域边界色显示的像素点所包围。随后,逐步取出一开始点并重复上述过程,直到所保存各区段都填充完毕为止。 借助于栈结构,区域填充的扫描线算法之步骤如下: Step 1. 初始化种子点栈:置种子点栈为空栈,并将给定的种子点入栈; Step 2. 出栈:若种子点栈为空,算法结束;否则,取栈顶元素(x,y)为种子点; Step 3. 区段填充:从种子点(x, y) 开始沿纵坐标为y 的当前扫描线向左右两个方向逐像素点进行填色,其颜色值置为newcolor 直至到达区域边界。分别以xl 和xr 表示该填充区段两端点的横坐标; Step 4. 新种子点入栈: 分别确定当前扫描线上、下相邻的两条

扫描线上位于区段[xl, xr] 内的区域内的区段。若这些区段内的像素点颜色值为newolor ,则转至Step 2;否则以区段的右端点为种子点入种子点栈,再转至Step 2。 四.原程序代码: /*****************************************/ /*4-ScanLineFill 区域填充的扫描线算法实现*/ /*****************************************/ #include #include #include #include #define Stack_Size 100 //栈的大小常量 //定义结构体,记录种子点 typedef struct{ int x; int y; }Seed; //定义顺序栈(种子点) typedef struct { Seed Point[Stack_Size]; int top;

计算机图形学实验报告8-种子点填充

《计算机图形学实验》报告 2016年春季学期 实验四:种子点填充算法Seed Filling 实验时间:2016年9月底 实验地点: 实验目的:掌握使用opengl 的种子点填充算法,观察改变参数对生成图形的改变(改变点的位置、 颜色等) 如果要填充的区域是以图像元数据方式给出的,通常使 用种子填充算法进行区域填充。种子填充算法的核心是 一个递归算法,都是从指定的种子点开始,向各个方向

上搜索,逐个像素进行处理,直到遇到边界。种子填充算法常用四连通域和八连通域技术进行填充操作。 从区域内任意一点出发,通过上、下、左、右四个方向到达区域内的任意像素。用这种方法填充的区域就称为四连通域;这种填充方法称为四向连通算法。 从区域内任意一点出发,通过上、下、左、右、左上、左下、右上和右下八个方向到达区域内的任意像素。用这种方法填充的区域就称为八连通域;这种填充方法称为八向连通算法。 算法的优点是非常简单,缺点是需要大量栈空间来存储相邻的点。 程序代码: 使用的运行环境是vc++6.0 #include #include typedef float Color[3]; //获取像素点的颜色 void getpixel(GLint x, GLint y, Color color) { glReadPixels(x, y, 1, 1, GL_RGB, GL_FLOAT, color); //OPENGL自带 } //画点函数 void setpixel(GLint x, GLint y) { glBegin(GL_POINTS); glVertex2f(x, y); glEnd(); } //比较颜色是否相等 int compareColor(Color color1, Color color2) { if (color1[0] != color2[0] || color1[1] != color2[1] || color1[2] != color2[2]) { return 0; } else { return 1; } } void boundaryFill4(int x, int y, Color fillColor, Color boarderColor) { Color interiorColor; getpixel(x, y, interiorColor); if (compareColor(interiorColor, fillColor) == 0 && compareColor(interiorColor, boarderColor) == 0) { setpixel(x, y); boundaryFill4(x + 1, y, fillColor, boarderColor);

区域填充算法的研究

区域填充算法的探究 本文由天空乐园大学生旅游网整理分享 摘要 区域填充算法是计算机图形学的一个重要研究课题.传统的区域填充算法存在填充结果不完备及算法效率不高的问题,在分析了两种传统区域填充算法的原理的基础上,详细阐述了四种改进的区域填充算法,并对算法的效率性能进行比较分析,指明了区域填充算法未来的研究热点,着重探究区域填充算法尤其是扫描线种子填充算法和种子填充算法近年来的发展状况,比较它们之间的优点与足,对图形学的区域填充算法有更深入的理解介绍种子填充算法及其改进算法。 关键词:区域填充;填充算法;扫描线算法;种子填充算法

1 引言 区域填充是指用不同的颜色、灰度、线条或符号填充一个有界区域,该区域可以是带孔的,也可以是不带孔的.它是计算机图形学的一项重要内容,在交互式图形设计、真实感图形显示、计算机辅助设计、图形分析等领域有着广泛的应用,一直是研究的热点.传统的区域填充算法有两种,一种是通过确定横跨区域的扫描线的覆盖间隔来填充的扫描线算法,另一种是从给定的位置开始填充直到指定的边界为止的种子填充算法.扫描线算法主要用来填充比较简单的标准多边形区域,比如圆、椭圆以及其他一些简单的多边形,它对轮廓线的形状有一定的要求,在处理复杂区域时往往失效.种子填充算法可以解决边界比较复的多边形区域填充问题,它必须首先确定一个或者多个区域内部的点作为种子点,并赋予填充色,然后以该点为起点,用四向连通方法或八向连通方法找到区域内的所有点填充。扫描线算法在处理带水平边的凹拐点时不能正确填充,这是该算法的一个突出问题,但由于利用了扫描线上象素之问的连贯性,因此具有较高的效率.最简单直观的种子填充算法采用递归方法,由于进行大量的出入栈操作,因此效率很低,在填充较大的区域时,要求分配较大的堆栈空问,不仅浪费了内存,也可能出现堆栈溢出现象.填充结果的完备性和填充过程的高效高速是区域填充算法的度量标准.在传统区域填充算法的基础上,很多文献提出了更加正确高效的算法.本文介绍四种改进的区域填充算法,并对其进行比较分析。 2 区域填充基本知识点介绍 2.1多边形扫描转换 在计算机图形学中,多边形有两种重要的表示方法:顶点表示和点阵表示。顶点表示是用多边形的顶点序列来表示多边形,特点直观、几何意义强、占内存少,易于进行几何变换,但由于它没有明确指出哪些像素在多边形内,故不能直接用于面着色。点阵表示是用位于多边形内的像素集合来刻画多边形。这种表示丢失了许多几何信息,但便于帧缓冲器表示图形,是面着色所需要的图形表示形式。光栅图形的一个基本问题是把多边形的顶点表示转换为点阵表示。这种转换称为多边形的扫描转换。 多边形可分为凸多边形、凹多边形、含内环多边形。 (1)凸多边形:任意两顶点间的连线均在多边形内。 (2)凹多边形:任意两顶点间的连线有不在多边形内的部分。 (3)含内环多边形:多边形内包含有封闭多边形。 扫描线多边形区域填充算法是按扫描线顺序,计算扫描线与多边形的相交区间,再用要求的颜色显示这些区间的像素。区间的端点可以通过计算扫描线与多边形边界线的交点获得。对于一条扫描线,多边形的填充过程可以分为4个步骤。(1)求交:计算扫描线与多边形各边的交点。 (2)排序:把所有交点按x值递增顺序排序。 (3)配对:第一个与第二个,第三个与第四个等,每对交点代表扫描线与多边形的一个相交区间。 (4)填色:把相交区间内的像素置成多边形颜色,把相交区间外的像素置成背景色。 多边形扫描转换算法步骤如下:

实验2:多边形区域扫描线填充或种子填充

实验2:多边形区域扫描线填充或种子填充 一、实验目的 1.通过实验,进一步理解和掌握几种常用多边形填充算法的基本原理 2.掌握多边形区域填充算法的基本过程 3.掌握在C/C++环境下用多边形填充算法编程实现指定多边形的填充。 二、实验内容 用种子填充算法和扫描线填充算法等任意两种算法实现指定多边形的区域填充。 三、实验原理 种子填充算法又称为边界填充算法。其基本思想是:从多边形区域的一个内点开始,由内向外用给定的颜色画点直到边界为止。如果边界是以一种颜色指定的,则种子填充算法可逐个像素地处理直到遇到边界颜色为止。种子填充算法常用四连通域和八连通域技术进行填充操作。 四向连通填充算法: a)种子像素压入栈中; b)如果栈为空,则转e);否则转c); c)弹出一个像素,并将该像素置成填充色;并判断该像素相邻的四连通像素是否为边界色或已经置成多边形的填充色,若不是,则将该像素压入栈; d)转b); e)结束。 扫描线填充算法的基本过程如下:当给定种子点(x,y)时,首先填充种子点所在扫描线上的位于给定区域的一个区段,然后确定与这一区段相连通的上、下两条扫描线上位于给定区域内的区段,并依次保存下来。反复这个过程,直到填充结束。 区域填充的扫描线算法可由下列四个步骤实现:

(1)初始化:堆栈置空。将种子点(x,y)入栈。 (2)出栈:若栈空则结束。否则取栈顶元素(x,y),以y作为当前扫描线。 (3)填充并确定种子点所在区段:从种子点(x,y)出发,沿当前扫描线向左、右两个方向填充,直到边界。分别标记区段的左、右端点坐标为xl和xr。 (4)并确定新的种子点:在区间[xl,xr]中检查与当前扫描线y上、下相邻的两条扫描线上的象素。若存在非边界、未填充的象素,则把每一区间的最右象素作为种子点压入堆栈,返回第(2)步。 四、实验步骤 1.复习有关算法,明确实验目的和要求; 2.依据算法思想,绘制程序流程图(指定填充多边形); 3.设计程序界面,要求操作方便; 4.用C/C++语言编写源程序并调试、执行(最好能用动画显示填充过程); 5.分析实验结果 6.对程序设计过程中出现的问题进行分析与总结; 7.打印源程序或把源程序以文件的形式提交; 8.按格式要求完成实验报告。 五、实验结果及分析 种子填充算法的优点是非常简单,缺点是需要大量栈空间来存储相邻的点。扫描线填充算法就是它的改进的方法。它是通过沿扫描线填充水平像素段,来处理四连通或八连通相邻点,这样就仅仅只需要将每个水平像素段的起始位置压入栈,而不需要将当前位置周围尚未处理的相邻像素都压入栈,从而可以节省大量的栈空间。 六、实验结果

计算机图形学区域填充算法的实现

实验四区域填充算法的实现 班级08信计学号58 姓名陈瑞雪分数 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ (及EasyX_2011版) 实现区域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 1、以上各种算法相应代码及运行结果如下: 程序代码: #include<> #include<> #include<> void FloodFill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); FloodFill4(x-1,y,oldcolor,newcolor); FloodFill4(x,y+1,oldcolor,newcolor); FloodFill4(x+1,y,oldcolor,newcolor); FloodFill4(x,y-1,oldcolor,newcolor); } } void main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," ");

最新《计算机图形学》有序边表填充算法讲课教案

实验报告 一、实验目的 1、掌握有序边表算法填充多边形区域; 2、理解多边形填充算法的意义; 3、增强C语言编程能力。 二、算法原理介绍 根据多边形内部点的连续性知:一条扫描线与多边形的交点中,入点和出点之间所有点都是多边形的内部点。所以,对所有的扫描线填充入点到出点之间所有的点就可填充多边形。 判断扫描线上的点是否在多边形之内,对于一条扫描线,多边形的扫描转换过程可以分为四个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把所有交点按x值递增顺序排序; (3)配对:第一个与第二个,第三个与第四个等等;每对交点代表扫描线与多边形的一个相交区间; (4)着色:把相交区间内的象素置成多边形颜色,把相交区间外的象素置成背景色。 p1,p3,p4,p5属于局部极值点,要把他们两次存入交点表中。如扫描线y=7上的交点中,有交点(2,7,13),按常规方法填充不正确,而要把顶点(7,7)两次存入交点表中(2,7,7,13)。p2,p6为非极值点,则不用如上处理。

为了提高效率,在处理一条扫描线时,仅对与它相交的多边形的边进行求交运算。把与当前扫描线相交的边称为活性边,并把它们按与扫描线交点x坐标递增的顺序存放在一个链表中,称此链表为活性边表(AET)。 对每一条扫描线都建立一个与它相交的多边形的活性边表(AET)。每个AET的一个节点代表一条活性边,它包含三项内容 1.x -当前扫描线与这条边交点的x坐标; 2.Δx -该边与当前扫描线交点到下一条扫描线交点的x增量; 3.ymax -该边最高顶点相交的扫描线号。 每条扫描线的活性边表中的活性边节点按照各活性边与扫描线交点的x值递增排序连接在一起。 当扫描线y移动到下一条扫描线y = y+1时,活性边表需要更新,即删去不与新扫描线相交的多边形边,同时增加与新扫描线相交的多边形边,并根据增量法重新计算扫描线与各边的交点x。 当多边形新边表ET构成后,按下列步骤进行: ①对每一条扫描线i,初始化ET表的表头指针ET[i]; ②将ymax = i的边放入ET[i]中; ③使y =多边形最低的扫描线号; ④初始化活性边表AET为空; ⑤循环,直到AET和ET为空。 ●将新边表ET中对应y值的新边节点插入到AET表。 ●遍历AET表,将两两配对的交点之间填充给定颜色值。 ●遍历AET表,将 ymax= y的边节点从AET表中删除,并将ymax> y的各边节点 的x值递增Δx;并重新排序。 ●y增加1。 三、程序源代码 #include "graphics.h" #define WINDOW_HEIGHT 480 #define NULL 0 #include "alloc.h" #include "stdio.h" #include "dos.h" #include "conio.h" typedef struct tEdge /*typedef是将结构定义成数据类型*/ { int ymax; /* 边所交的最高扫描线号 */

计算机图形区域填充算法

西安工程大学实验报告 课程实验名称区第 1 页共 6 页 系别组别_____________ 实验报告日期年月日 姓名学号报告退发 ( 订正、重做 ) E_mail:_________________________________ 教师审批评分___________________ 区域填充算法 一、实验目的和任务 1. 学习多边形填充的基于扫描线的区域填充算法 2. 编程实现区域填充算法 二、实验环境和设备 windows系统下 vs2012 c++ 三、实验步骤和过程 在MFC框架中通过菜单与对话框实现多边形顶点参量的输入,选择各种填充算法中的两种进行展示,其中栅栏填充和边填充算法不能同时选择,多边形的表示根据所选择的算法,以内点表示或边界表示均可

四、实验故障与排除 五、总结 附录 #include #include const int POINTNUM = 7; //多边形点数. /******定义结构体用于活性边表AET和新边表NET***********************************/ typedef struct XET { float x; float dx, ymax; XET* next; }AET, NET; /******定义点结构体

point******************************************************/ struct point { float x; float y; } polypoint[POINTNUM] = { 250, 50, 550, 150, 550, 400, 250, 250, 100, 350, 100, 100, 120, 30 };//多边形顶点 void PolyScan() { /******计算最高点的y坐标(扫描到此结 束)****************************************/ int MaxY = 0; int i; for (i = 0; iMaxY) MaxY = polypoint[i].y; /*******初始化AET表 ***********************************************************/ AET *pAET = new AET; pAET->next = NULL; /******初始化NET表 ************************************************************/ NET *pNET[1024]; for (i = 0; i <= MaxY; i++) { pNET[i] = new NET; pNET[i]->next = NULL; } glClear(GL_COLOR_BUFFER_BIT); //赋值的窗体显示. glColor3f(0.0, 0.0, 0.0); //设置直线的颜色红色 glBegin(GL_POINTS); /******扫描并建立NET表 *********************************************************/ for (i = 0; i <= MaxY; i++) { for (int j = 0; jpolypoint[j].y) {

文本预览
相关文档 最新文档