计算机图形学扫描线种子填充算法
- 格式:ppt
- 大小:658.50 KB
- 文档页数:29
《计算机图形学实验》报告2016年春季学期实验四:种子点填充算法Seed Filling实验时间:2016年9月底实验地点:实验目的:掌握使用opengl 的种子点填充算法,观察改变参数对生成图形的改变(改变点的位置、颜色等)如果要填充的区域是以图像元数据方式给出的,通常使用种子填充算法进行区域填充。
种子填充算法的核心是一个递归算法,都是从指定的种子点开始,向各个方向上搜索,逐个像素进行处理,直到遇到边界。
种子填充算法常用四连通域和八连通域技术进行填充操作。
从区域内任意一点出发,通过上、下、左、右四个方向到达区域内的任意像素。
用这种方法填充的区域就称为四连通域;这种填充方法称为四向连通算法。
从区域内任意一点出发,通过上、下、左、右、左上、左下、右上和右下八个方向到达区域内的任意像素。
用这种方法填充的区域就称为八连通域;这种填充方法称为八向连通算法。
算法的优点是非常简单,缺点是需要大量栈空间来存储相邻的点。
程序代码:使用的运行环境是vc++6.0#include <glut.h>#include <fstream>typedef float Color[3];//获取像素点的颜色void getpixel(GLint x, GLint y, Color color) {glReadPixels(x, y, 1, 1, GL_RGB, GL_FLOAT, color); //OPENGL自带}//画点函数void setpixel(GLint x, GLint y) {glBegin(GL_POINTS);glVertex2f(x, y);glEnd();}//比较颜色是否相等int compareColor(Color color1, Color color2) {if (color1[0] != color2[0] || color1[1] != color2[1] || color1[2] != color2[2]) { return 0; }else { return 1; }}void boundaryFill4(int x, int y, Color fillColor, Color boarderColor) {Color interiorColor;getpixel(x, y, interiorColor);if (compareColor(interiorColor, fillColor) == 0 && compareColor(interiorColor, boarderColor) == 0) { setpixel(x, y);boundaryFill4(x + 1, y, fillColor, boarderColor);boundaryFill4(x - 1, y, fillColor, boarderColor);boundaryFill4(x, y + 1, fillColor, boarderColor);boundaryFill4(x, y - 1, fillColor, boarderColor);}}void boundaryFill8(int x, int y, Color fillColor, Color boarderColor) {Color interiorColor, a, b, c, d;getpixel(x, y, interiorColor);getpixel(x + 1, y, a);getpixel(x, y - 1, b);getpixel(x, y + 1, c);getpixel(x - 1, y, d);int i = 0;if (compareColor(a, boarderColor) == 1) i++;if (compareColor(b, boarderColor) == 1) i++;if (compareColor(c, boarderColor) == 1) i++;if (compareColor(d, boarderColor) == 1) i++;if (i <= 1) {if (compareColor(interiorColor, fillColor) == 0 && compareColor(interiorColor, boarderColor) == 0) {setpixel(x, y);boundaryFill8(x+1,y,fillColor,boarderColor);boundaryFill8(x-1,y,fillColor,boarderColor);boundaryFill8(x,y+1,fillColor,boarderColor);boundaryFill8(x,y-1,fillColor,boarderColor);boundaryFill8(x-1,y+1,fillColor,boarderColor);boundaryFill8(x-1,y-1,fillColor,boarderColor);boundaryFill8(x+1,y+1,fillColor,boarderColor);boundaryFill8(x+1,y-1,fillColor,boarderColor);}}}void polygon() {glBegin(GL_LINE_LOOP);glLineWidth(5);//此处修改坐标,绘制多边形glVertex2f(100, 150);glVertex2f(150, 200);glVertex2f(200, 200);glVertex2f(200, 160);glEnd();}void display(void) {Color fillColor = {0.0, 1.0, 1.0};//填充颜色Color boarderColor = {0.0, 1.0, 0.0};//边界颜色glClear(GL_COLOR_BUFFER_BIT);glViewport(0, 0, 500, 500);glColor3fv(boarderColor);polygon();glColor3fv(fillColor);//boundaryFill4(150, 150, fillColor, boarderColor);//设置起点坐标及颜色boundaryFill8(120, 160, fillColor, boarderColor);glFlush();}int main(int argc, char **argv) {glutInit(&argc, argv);glutInitDisplayMode(GLUT_SINGLE | GLUT_RED);glutInitWindowSize(500, 500);glutInitWindowPosition(100, 100);glutCreateWindow("BoundaryFill1");glClearColor(1, 1, 1, 0.0);glMatrixMode(GL_PROJECTION);//投影模型gluOrtho2D(0.0, 500.0, 0.0, 500.0);glutDisplayFunc(display);glutMainLoop();return 0;}实验结果:(更改颜色)(更改形状)。
实验2:多边形区域扫描线填充或种子填充计科102 蓝广森 1007300441一、实验目的通过实验,进一步理解和掌握几种常用多边形填充算法的基本原理掌握多边形区域填充算法的基本过程掌握在C/C++环境下用多边形填充算法编程实现指定多边形的填充。
二、实验内容及要求实现多边形区域扫描线填充的有序边表算法,并将实现的算法应用于任意多边形的填充,要求多边形的顶点由键盘输入或鼠标拾取,填充要准确,不能多填也不能少填。
要求掌握边形区域扫描线填充的有序边表算法的基本原理和算法设计,画出算法实现的程序流程图,使用C或者VC++实现算法,并演示。
三、实验原理种子填充算法又称为边界填充算法。
其基本思想是:从多边形区域的一个内点开始,由内向外用给定的颜色画点直到边界为止。
如果边界是以一种颜色指定的,则种子填充算法可逐个像素地处理直到遇到边界颜色为止。
种子填充算法常用四连通域和八连通域技术进行填充操作。
四向连通填充算法:a)种子像素压入栈中;b)如果栈为空,则转e);否则转c);c)弹出一个像素,并将该像素置成填充色;并判断该像素相邻的四连通像素是否为边界色或已经置成多边形的填充色,若不是,则将该像素压入栈;d)转b);e)结束。
扫描线填充算法的基本过程如下:当给定种子点(x,y)时,首先填充种子点所在扫描线上的位于给定区域的一个区段,然后确定与这一区段相连通的上、下两条扫描线上位于给定区域内的区段,并依次保存下来。
反复这个过程,直到填充结束。
区域填充的扫描线算法可由下列四个步骤实现:(1)初始化:堆栈置空。
将种子点(x,y)入栈。
(2)出栈:若栈空则结束。
否则取栈顶元素(x,y),以y作为当前扫描线。
(3)填充并确定种子点所在区段:从种子点(x,y)出发,沿当前扫描线向左、右两个方向填充,直到边界。
分别标记区段的左、右端点坐标为xl和xr。
(4)并确定新的种子点:在区间[xl,xr]中检查与当前扫描线y上、下相邻的两条扫描线上的象素。
多边形扫描线填充算法技巧扫描线填充算法是计算机图形学中常用的一种填充算法,用于对多边形进行填充。
其基本原理是通过扫描线与多边形边界的交点来确定需要填充的像素点。
本文将介绍多边形扫描线填充算法的基本思想以及一些常用的优化技巧。
一、基本思想多边形扫描线填充算法的基本思想是将多边形分解成一系列水平线段,然后对每条水平线段进行扫描,找出与多边形边界相交的点,并进行填充。
具体步骤如下:1. 确定多边形的边界:对于给定的多边形,首先需要确定其边界。
可以使用边界表(edge table)来存储多边形的边界信息,包括每条边的起点和终点坐标以及斜率等。
2. 初始化扫描线:从多边形边界中找出最小的y坐标和最大的y坐标,作为扫描线的起点和终点。
3. 扫描线算法:对于每条扫描线,通过遍历边界表,找出与扫描线相交的边界线段。
根据相交点的x坐标,确定需要填充的像素点范围。
4. 填充像素点:根据上一步确定的像素点范围,将扫描线上的像素点进行填充。
二、技巧和优化1. 边界表的构建:为了提高算法的效率,可以对边界表进行排序,按照扫描线的y坐标来排序。
这样可以减少对边界表的遍历次数,提高算法的执行速度。
2. 边界交点的计算:在扫描线算法中,需要计算扫描线与多边形边界的交点。
可以使用活性边表(active edge table)来存储当前与扫描线相交的边界线段,并根据交点的x坐标进行排序。
这样可以减少计算交点的次数,提高算法的效率。
3. 填充像素点的优化:在填充像素点时,可以使用扫描线种子填充算法来进行优化。
该算法通过选择合适的填充起点,在填充过程中自动推进扫描线,减少不必要的计算和填充操作,提高填充的速度。
4. 填充规则的处理:在实际应用中,可能会遇到一些特殊情况,如多边形内部有孔洞或交叉等。
针对这些情况,可以通过修改填充规则来处理。
常用的填充规则有奇偶填充规则和非零填充规则,可以根据实际情况选择合适的填充规则。
5. 像素点颜色的处理:在多边形填充过程中,可以通过设置填充的颜色或纹理来实现不同的效果。
《计算机图形学》实验报告(实验二:图形填充算法)一、实验目的及要求用两种方法做图形的填充算法!二、理论基础1.边填充算法对于每一条扫描线和每条多边形的交点(x1,y1),将该扫描线上的交点右方的所有像素取补。
2.种子填充算法利用栈来实现种子填充算法。
种子像素入栈,当栈非空时重复执行如下步骤:将栈顶像素出栈,将出栈像素置成多边形色,按左,上,右,下顺序检查与出栈像素相邻的四个像素,若其中某个像素不再边界且未置成多边形,则把该像素入栈!三、算法设计与分析1、边填充算法void CEdge_mark_fillView::OnDraw(CDC* pDC){CEdge_mark_fillDoc* pDoc = GetDocument();ASSERT_V ALID(pDoc);int d[500][500]={0};int inside;int x,y;Bresenham(80,101,100,400,d);Bresenham(100,300,290,400,d);Bresenham(292,400,382,50,d);Bresenham(380,50,202,150,d);Bresenham(200,150,82,101,d);for(y=0;y<500;y++){inside=0;for(x=0;x<500;x++){if(d[x][y]==1)if(d[x+1][y]!=1){inside=!(inside);}if(inside!=0)pDC->SetPixel(x,y,12);}}}2、种子填充int x=299,y=51;COLORREF oldcolor;COLORREF newcolor;oldcolor=RGB(256,256,256);newcolor=RGB(123,123,123);pDC->MoveTo (40,40);pDC->LineTo (80,40);pDC->LineTo (70,80);pDC->LineTo (40,40);FloodFill(51,51,RGB(255,255,255),RGB(0,0,255));pDC->LineTo (40,40);void CMyView::FloodFill(int x,int y,COLORREF oldcolor,COLORREF newcolor) {CDC* pDC;pDC=GetDC();if(pDC->GetPixel(x,y)==oldcolor){pDC->SetPixel(x,y,newcolor);FloodFill(x,y-1,oldcolor,newcolor);FloodFill(x,y+1,oldcolor,newcolor);FloodFill(x-1,y,oldcolor,newcolor);FloodFill(x+1,y,oldcolor,newcolor);}四、程序调试及结果的分析1、2、四、实验心得及建议由于很多不会,所以这次没能按时当堂完成,下来花了不少时间才弄出来,第二种尤其比较麻烦,在同学的帮助下才做出来了。
填充(Fill)相关知识点填充(Fill)是一种常见的计算机图形学技术,用于在图像或物体的内部或边界区域中填充颜色或纹理。
填充技术在许多领域中被广泛应用,如图像处理、计算机辅助设计(CAD)和计算机游戏开发等。
本文将介绍填充相关的知识点,从基本原理到常见算法,让读者对填充技术有一个全面的了解。
基本原理填充技术的基本原理是通过某种规则或算法,在给定的区域内部或边界上填充颜色或纹理。
这个区域可以是一个简单的几何形状,如矩形或圆形,也可以是一个复杂的多边形。
填充通常从区域内部的某个点开始,按照一定的规则或算法进行扩散,直到填充满整个区域。
基本算法以下是一些常见的填充算法:扫描线填充算法扫描线填充算法是一种基于扫描线的填充方法。
它通过将扫描线与区域的边界进行比较,确定扫描线与区域的交点,并根据规则填充扫描线上的像素。
该算法的优点是简单易懂,并且适用于任意形状的区域。
边界填充算法边界填充算法是一种基于区域边界的填充方法。
它通过检测区域的边界像素,并根据规则填充区域内部的像素。
该算法的优点是填充效果清晰,但对于复杂的区域边界可能会存在一些问题。
种子填充算法种子填充算法是一种基于种子点的填充方法。
它通过选择一个种子点作为起始点,并按照一定的规则或算法进行扩散填充。
种子填充算法适用于复杂的区域填充,但可能存在堆栈溢出的问题。
填充的应用领域填充技术在许多领域中都有广泛的应用,以下是其中一些常见的应用领域:图像处理在图像处理中,填充技术可以用于图像的增强、修复和合成等方面。
例如,可以使用填充技术修复图像中的缺陷、填充图像的边界以及合成多个图像。
计算机辅助设计(CAD)在计算机辅助设计中,填充技术可以用于填充图形对象的内部或边界,以增加图形的真实感和细节。
例如,可以使用填充技术填充建筑物的内部、道路的纹理以及地形的颜色。
计算机游戏开发在计算机游戏开发中,填充技术可以用于填充游戏场景的地形、角色的纹理以及特效的颜色。
通过使用填充技术,可以使游戏画面更加精美和逼真。
扫描线种子填充算法扫描线种子填充算法的基本过程如下:当给定种子点(x, y)时,首先分别向左和向右两个方向填充种子点所在扫描线上的位于给定区域的一个区段,同时记下这个区段的范围[xLeft, xRight],然后确定与这一区段相连通的上、下两条扫描线上位于给定区域内的区段,并依次保存下来。
反复这个过程,直到填充结束。
扫描线种子填充算法可由下列四个步骤实现:(1) 初始化一个空的栈用于存放种子点,将种子点(x, y)入栈;(2) 判断栈是否为空,如果栈为空则结束算法,否则取出栈顶元素作为当前扫描线的种子点(x, y),y是当前的扫描线;(3) 从种子点(x, y)出发,沿当前扫描线向左、右两个方向填充,直到边界。
分别标记区段的左、右端点坐标为xLeft和xRight;(4) 分别检查与当前扫描线相邻的y - 1和y + 1两条扫描线在区间[xLeft, xRight]中的像素,从xLeft开始向xRight方向搜索,若存在非边界且未填充的像素点,则找出这些相邻的像素点中最右边的一个,并将其作为种子点压入栈中,然后返回第(2)步;这个算法中最关键的是第(4)步,就是从当前扫描线的上一条扫描线和下一条扫描线中寻找新的种子点。
如果新扫描线上实际点的区间比当前扫描线的[xLeft, xRight]区间大,而且是连续的情况下,算法的第(3)步就处理了这种情况。
如图所示:新扫描线区间增大且连续的情况假设当前处理的扫描线是黄色点所在的第7行,则经过第3步处理后可以得到一个区间[6,10]。
然后第4步操作,从相邻的第6行和第8行两条扫描线的第6列开始向右搜索,确定红色的两个点分别是第6行和第8行的种子点,于是按照顺序将(6, 10)和(8, 10)两个种子点入栈。
接下来的循环会处理(8, 10)这个种子点,根据算法第3步说明,会从(8, 10)开始向左和向右填充,由于中间没有边界点,因此填充会直到遇到边界为止,所以尽管第8行实际区域比第7行的区间[6,10]大,但是仍然得到了正确的填充。
计算机图形学——区域填充算法(基本光栅图形算法)⼀、区域填充概念区域:指已经表⽰成点阵形式的填充图形,是象素的集合。
区域填充:将区域内的⼀点(常称【种⼦点】)赋予给定颜⾊,然后将这种颜⾊扩展到整个区域内的过程。
区域填充算法要求区域是连通的,因为只有在连通区域中,才可能将种⼦点的颜⾊扩展到区域内的其它点。
1、区域有两种表⽰形式1)内点表⽰:枚举出区域内部的所有象素,内部所有象素着同⼀个颜⾊,边界像素着与内部象素不同的颜⾊。
2)边界表⽰:枚举出区域外部的所有象素,边界上的所有象素着同⼀个颜⾊,内部像素着与边界象素不同的颜⾊。
21)四向连通区域:从区域上⼀点出发可通过【上、下、左、右】四个⽅向移动的组合,在不越出区域的前提下,到达区域内的任意象素。
2)⼋向连通区域:从区域上⼀点出发可通过【上、下、左、右、左上、右上、左下、右下】⼋个⽅向移动的组合,在不越出区域的前提下,到达区域内的任意象素。
⼆、简单种⼦填充算法给定区域G⼀种⼦点(x, y),⾸先判断该点是否是区域内的⼀点,如果是,则将该点填充为新的颜⾊,然后将该点周围的四个点(四连通)或⼋个点(⼋连通)作为新的种⼦点进⾏同样的处理,通过这种扩散完成对整个区域的填充。
这⾥给出⼀个四连通的种⼦填充算法(区域填充递归算法),使⽤【栈结构】来实现原理算法原理如下:种⼦像素⼊栈,当【栈⾮空】时重复如下三步:这⾥给出⼋连通的种⼦填充算法的代码:void flood_fill_8(int[] pixels, int x, int y, int old_color, int new_color){if(x<w&&x>0&&y<h&&y>0){if (pixels[y*w+x]==old_color){pixels[y*w+x]== new_color);flood_fill_8(pixels, x,y+1,old_color,new_color);flood_fill_8(pixels, x,y-1,old_color,new_color);flood_fill_8(pixels, x-1,y,old_color,new_color);flood_fill_8(pixels, x+1,y,old_color,new_color);flood_fill_8(pixels, x+1,y+1,old_color,new_color);flood_fill_8(pixels, x+1,y-1,old_color,new_color);flood_fill_8(pixels, x-1,y+1,old_color,new_color);flood_fill_8(pixels, x-1,y-1,old_color,new_color);}}}简单种⼦填充算法的不⾜a)有些像素会多次⼊栈,降低算法效率,栈结构占空间b)递归执⾏,算法简单,但效率不⾼,区域内每⼀像素都要进/出栈,费时费内存c)改进算法,减少递归次数,提⾼效率三、扫描线种⼦填充算法基本思想从给定的种⼦点开始,填充当前扫描线上种⼦点所在的⼀区段,然后确定与这⼀段相邻的上下两条扫描线上位于区域内的区段(需要填充的区间),从这些区间上各取⼀个种⼦点依次把它们存起来,作为下次填充的种⼦点。
扫描线区域填充算法
扫描线区域填充算法,又称为"扫描线填涂算法",它用于对平面中特定区域填充指定的颜色、灰度或纹理,是计算机图形学中常用的算法之一。
该算法的原理是:给定待填充的区域内的点的有限个边界,从某一顶点开始,以某一规则遍历所有的边界点,形成边界数组,接着顺次扫描边界数组,将包含在边界中的每个合理像素点标记成已填充状态,由此而达到填充区域的目的。
算法步骤如下:
(1)设置起始点A,判断是否存在右方向上有没有边界点,若有,则把下一个边界点B作为起始点;
(2)从起始点A 开始,以扫描线的形式一次扫描边界点,把有效的像素点标记为“已填充”;
(3)把已扫描的点加入边界数组,直到下一个边界点C,且C点不等于起始点A;
(4)重复步骤(2)和(3),直至再回到起始点A,完成一次区域填充;
(5)如果还有未填充的区域,则重复步骤(1)至(4),直至所有区域填充完成。
实际应用中,为了避免停滞,可以采用八方向搜索策略;此外,由于扫描线填充算法中填充空间的范围是由边界点定义的,因此,当边界未经处理的是孤立的点或直线时,将无法实现实际的填充效果。