多边形区域填充算法
- 格式:docx
- 大小:604.32 KB
- 文档页数:14
c语言多边形区域填充算法C语言多边形区域填充算法一、介绍多边形区域填充算法是计算机图形学中的一项重要技术,用于将给定的多边形区域进行填充,使其呈现出丰富的颜色或纹理,增强图形的效果和表现力。
本文将介绍一种常用的C语言多边形区域填充算法——扫描线填充算法。
二、扫描线填充算法原理扫描线填充算法是一种基于扫描线的填充方法,其基本思想是将多边形区域按照水平扫描线的顺序,从上到下逐行扫描,通过判断扫描线与多边形边界的交点个数来确定是否进入多边形区域。
具体步骤如下:1. 首先,确定多边形的边界,将其存储为一个边表。
边表中的每个边都包含起点和终点的坐标。
2. 创建一个活性边表(AET),用于存储当前扫描线与多边形边界的交点。
初始时,AET为空。
3. 从上到下逐行扫描多边形区域,对每一条扫描线,从边表中找出与该扫描线相交的边,并将其加入AET中。
4. 对于AET中的每一对交点,按照从左到右的顺序两两配对,形成水平线段,将其填充为指定的颜色或纹理。
5. 在扫描线的下一行,更新AET中的交点的坐标,然后重复步骤4,直到扫描到多边形区域的底部。
三、代码实现下面是一个简单的C语言实现扫描线填充算法的示例代码:```#include <stdio.h>#include <stdlib.h>#include <stdbool.h>typedef struct {int x;int y;} Point;typedef struct {int yMax;float x;float dx;int next;} Edge;void fillPolygon(int n, Point* points, int color) {// 获取多边形的边界int yMin = points[0].y;int yMax = points[0].y;for (int i = 1; i < n; i++) {if (points[i].y < yMin) {yMin = points[i].y;}if (points[i].y > yMax) {yMax = points[i].y;}}// 创建边表Edge* edges = (Edge*)malloc(sizeof(Edge) * n);int k = n - 1;for (int i = 0; i < n; i++) {if (points[i].y < points[k].y) {edges[i].yMax = points[k].y;edges[i].x = points[i].x;edges[i].dx = (float)(points[k].x - points[i].x) / (points[k].y - points[i].y);edges[i].next = k;} else {edges[i].yMax = points[i].y;edges[i].x = points[k].x;edges[i].dx = (float)(points[i].x - points[k].x) / (points[i].y - points[k].y);edges[i].next = i;}k = i;}// 扫描线填充for (int y = yMin; y < yMax; y++) {int xMin = INT_MAX;int xMax = INT_MIN;for (int i = 0; i < n; i++) {if (y >= edges[i].yMax) {continue;}edges[i].x += edges[i].dx;if (edges[i].x < xMin) {xMin = edges[i].x;}if (edges[i].x > xMax) {xMax = edges[i].x;}int j = edges[i].next;while (j != i) {edges[j].x += edges[j].dx; if (edges[j].x < xMin) {xMin = edges[j].x;}if (edges[j].x > xMax) {xMax = edges[j].x;}j = edges[j].next;}}for (int x = xMin; x < xMax; x++) { drawPixel(x, y, color);}}free(edges);}int main() {// 定义多边形的顶点坐标Point points[] = {{100, 100},{200, 200},{300, 150},{250, 100}};// 填充多边形区域为红色fillPolygon(4, points, RED);return 0;}```四、总结通过扫描线填充算法,我们可以实现对多边形区域的填充,从而提升图形的表现效果。
扫描线多边形填充算法扫描线多边形区域填充算法是按照扫描线顺序,计算扫描线与多边形的相交区间,再用要求的颜色显示这些去区间的像素(即完成填充)。
填充过程:1 求交:计算扫面线与多边形个边的交点。
2 排序: 把所有交点按x值地震顺序排序。
2 配对:两两配对,1,和2,3和4 等等。
每对交点代表扫面线与多边形的一个相交区间。
4 填充:把相交区间内的像素设置成多边形颜色。
相交顶点的数目确定:检查相交顶点的两条边的另外两个定点的y值。
按这两个y值中大于交点y值得个数是0,1,2来决定是取0,1或2个。
边界像素取舍:对扫描线与多边形的相交区间取左闭右开。
水平边界处理:水平边不参与求交计算,跳过。
相交:把多边形的所有边放在一个表中,处理每条扫描线是,按顺序从表中取出所有边,分别与扫面线求交。
改进:效率低,可只求与它相交的多边形的边进行求交运算。
算法思想及实现:活性边:与当前扫描线相交的边。
活性边表:把活性边按与扫描线线交点x坐标递增的顺序存放在一个链表中。
活性边的每个节点的内容:X ,X的变化量,Y的最大值,一个指针。
1 存放当前扫描线与边的交点坐标x值。
2 存放从当前扫描线到下一条扫描线间x的增量3 存放该边所交的最高扫面线号ymax;4 存放指向下一条边的指针。
算法的主要步骤:建立NET(new edge list)从最低扫面线开始到最高扫面线循环。
建立或调整AET(active edge list)按照AET总的接点顺序填充。
算法描述:算法描述:void polyfill (多边形polygon, 颜色color){for (各条扫描线i ){ 初始化新边表头指针NET [i];把ymin = i 的边放进边表NET [i];}y = 最低扫描线号;初始化活性边表AET为空;for (各条扫描线i ){ 把新边表NET[i]中的边结点用插入排序法插入AET表,使之按x坐标递增顺序排列;遍历AET表,把配对交点区间(左闭右开)上的象素(x,y),用drawpixel (x, y, color) 改写象素颜色值;遍历AET表,把y max= i +1的结点从AET表中删除,并把y max > i+1结点的x值递增D x;若允许多边形的边自相交,则用冒泡排序法对AET表重新排序;}} /* polyfill */。
多边形填充算法
多边形填充算法是一种计算机图形学中的算法,用于将一个封闭的多边形区域(如矩形、三角形、梯形等)填充成指定的颜色。
在计算机图形学中,多边形是由一系列线段(边)连接成的封闭区域。
填充算法的目的是在多边形的内部填充指定的颜色。
这种算法通常用于计算机辅助设计、计算机游戏开发、计算机动画、计算机视觉等领域。
填充算法有多种实现方法,包括扫描线填充、种子填充、边界填充、区域分割等。
其中,扫描线填充是最常见的一种算法,它的基本思想是从多边形的最上面一行开始,逐行向下扫描,同时记录扫描线和多边形之间的交点。
当扫描线与多边形的边相交时,根据交点的奇偶性来判断该点是否在多边形内部。
如果是奇数个交点,则该点在多边形内部,需要进行填充;如果是偶数个交点,则该点在多边形外部,不需要填充。
种子填充是另一种常见的填充算法,它的基本思想是从多边形内部的一个点(种子)开始,向外扩散填充。
在扩散过程中,同时记录已经填充过的像素点,避免重复填充。
这种算法的优点是填充速度较快,但容易出现填充区域不封闭、填充效果不理想等问题。
边界填充和区域分割是另外两种填充算法,它们的实现方式比较复杂,但可以处
理比较复杂的填充情况,例如多个子多边形共同填充、奇异多边形填充等。
总的来说,多边形填充算法在计算机图形学中具有重要的应用价值和研究意义,不同的填充算法各有优缺点,需要根据具体的需求和应用场景来选择合适的算法。
多边形填充算法本在计算机图形学中,使用多边形填充算法可以实现各种图形的绘制,例如:圆形、椭圆形、字母等。
对于任意形状的多边形来说,其内部像素点的坐标是无法直接计算得到的,因此需要通过一定的算法来实现。
常见的多边形填充算法有扫描线填充算法和边界填充算法。
接下来我们来详细了解这两种算法。
扫描线填充算法是通过扫描多边形上的每一条水平线,找到与多边形相交的线段,并进行填充操作。
具体步骤如下:1.找到多边形的最高点和最低点,作为扫描线的起点和终点。
2.将扫描线从起点依次向下移动,直到到达终点。
3.在每一条扫描线上,找到与多边形相交的线段。
4.根据线段的起点和终点,计算交点的x坐标,并从起点到终点对应的像素点进行填充。
5.重复步骤4,直到所有的扫描线都处理完毕。
扫描线填充算法的优点是简单易懂,适用于一般情况。
但是对于复杂的多边形来说,会存在边界交叉的情况,需要特殊处理。
边界填充算法是通过检测多边形的边界点,并进行填充操作。
具体步骤如下:1.找到多边形的最左边、最右边、最上边和最下边的点,作为边界点。
2.从最上边的点开始,依次向下遍历每一行像素点。
3.在每一行中,寻找与多边形边界相交的点,并进行填充操作。
4.重复步骤3,直到到达最下边的点。
边界填充算法的优点是对具有复杂交叉边界的多边形也能进行正确的填充操作。
但是对于非凸多边形来说,边界填充算法可能会有空隙出现。
除了以上两种常见的多边形填充算法,还有其他一些算法也可以实现多边形的填充操作,例如:扫描转换填充算法、边界边框填充算法等。
在实际应用中,多边形填充算法通常结合图形处理库或者计算机图形学软件来实现。
这些软件提供了丰富的函数和方法,可以直接调用进行多边形的填充操作。
综上所述,多边形填充算法是计算机图形学中的一个重要算法。
通过扫描线填充算法或者边界填充算法,可以实现对任意形状多边形的填充操作。
随着计算机图形学的发展,多边形填充算法也不断进化和优化,以满足不同应用场景的需求。
贵州大学计算机图形学实验报告学院:计算机科学与信息学院专业:软件工程班级:反映)根据扫描线的连贯性可知:一条扫描线与多边形的交点中,入点和出点之间所有点都是多边形的内部点。
所以,对所有的扫描线填充入点到出点之间的点就可填充多边形。
如何具体实现(如何找到入点、出点)?根据区域的连贯性,分为3个步骤:(1)求出扫描线与多边形所有边的交点;(2)把这些交点按x坐标值以升序排列;(3)对排序后的交点进行奇偶配对,对每一对交点间的区域进行填充。
步骤(3)如上图:对y=8的扫描线,对交点序列按x坐标升序排序得到的交点序列是(2,4,9,13),然后对交点2与4之间、9与13之间的所有象素点进行填充。
求交点、排序、配对、填色利用链表:与当前扫描线相交的边称为活性边(Active Edge),把它们按与扫描线交点x坐标递增的顺序存入一个链表中,称为活性边表AEL (AEL, Active Edge List)。
它记录了多边形边沿扫描线的交点序列。
AEL中每个对象需要存放的信息:ymax:边所交的最高扫描线;x:当前扫描线与边的交点;Δx:从当前扫描线到下一条扫描线之间的x增量next:指向下一对象的指针。
伪码:建立ET,置y为ET中非空桶的最小序号;置AEL表为空,且把y桶中ET表的边加入AEL表中;while AEL表中非空do begin对AEL表中的x、Δx按升序排列;按照AEL表中交点前后次序,在每对奇偶交点间的x段予以填充;计算下一条扫描线:y=y+1;if 扫描线y=ymax then 从AEL表中删除这些边;对在AEL表中的其他边,计算与下一条扫描线的交点:x=x +Δx 按照扫描线y值把ET表中相应桶中的边加入AEL表中;endend of algorithm二、区域填充算法:区域可采用两种表示形式:内点表示枚举区域内部的所有像素;内部的所有像素着同一个颜色;边界像素着不同的颜色。
边界表示:枚举出边界上所有的像素;边界上的所有像素着同一颜色;内部像素着不同的颜色。
算法系列之十二:多边形区域填充算法--递归种子填充算法平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界(也可以是没有边界,只是给出指定颜色),要求将边界范围内的所有象素单元都修改成指定的颜色(也可能是图案填充)。
区域填充中最常用的是多边形填色,本文中我们就讨论几种多边形区域填充算法。
一、种子填充算法(Seed Filling)如果要填充的区域是以图像元数据方式给出的,通常使用种子填充算法(Seed Filling)进行区域填充。
种子填充算法需要给出图像数据的区域,以及区域内的一个点,这种算法比较适合人机交互方式进行的图像填充操作,不适合计算机自动处理和判断填色。
根据对图像区域边界定义方式以及对点的颜色修改方式,种子填充又可细分为几类,比如注入填充算法(Flood Fill Algorithm)、边界填充算法(Boundary Fill Algorithm)以及为减少递归和压栈次数而改进的扫描线种子填充算法等等。
所有种子填充算法的核心其实就是一个递归算法,都是从指定的种子点开始,向各个方向上搜索,逐个像素进行处理,直到遇到边界,各种种子填充算法只是在处理颜色和边界的方式上有所不同。
在开始介绍种子填充算法之前,首先也介绍两个概念,就是“4-联通算法”和“8-联通算法”。
既然是搜索就涉及到搜索的方向问题,从区域内任意一点出发,如果只是通过上、下、左、右四个方向搜索到达区域内的任意像素,则用这种方法填充的区域就称为四连通域,这种填充方法就称为“4-联通算法”。
如果从区域内任意一点出发,通过上、下、左、右、左上、左下、右上和右下全部八个方向到达区域内的任意像素,则这种方法填充的区域就称为八连通域,这种填充方法就称为“8-联通算法”。
如图1(a)所示,假设中心的蓝色点是当前处理的点,如果是“4-联通算法”,则只搜索处理周围蓝色标识的四个点,如果是“8-联通算法”则除了处理上、下、左、右四个蓝色标识的点,还搜索处理四个红色标识的点。
计算机图形学多边形填充算法计算机图形学中的多边形填充算法是指将给定的多边形区域进行颜色填充,以使其完全填充的过程。
在图形学中,多边形是由一系列连续的线段组成的封闭图形。
填充算法可用于渲染图形、绘制图像等应用场景。
多边形填充算法的目标是根据设计要求和用户输入,给定一个多边形的边界,将多边形的内部区域进行颜色填充。
填充算法的实现涉及到图像的扫描线和区域判定,以确定填充的区域和颜色。
在本文中,我们将介绍常见的多边形填充算法,包括扫描线填充算法、边界填充算法等,并讨论它们的优缺点和适用场景。
扫描线填充算法扫描线填充算法是一种常见且简单的多边形填充算法。
该算法将多边形划分为一条条水平扫描线,并通过判断扫描线与多边形边界的交点,确定填充区域。
具体步骤如下:1.找到多边形边界的最上端和最下端。
2.从最上端开始,逐行进行扫描。
3.在每一行,通过求解扫描线与多边形边界的交点,确定填充区域。
4.对于每个填充区域,根据设计要求进行颜色填充。
扫描线填充算法的优点是简单易懂、实现较为容易。
然而,该算法存在一些缺点。
首先,对于具有复杂形状的多边形,扫描线填充算法可能会产生很多不必要的计算,导致效率降低。
其次,该算法需要处理多边形边界相交的情况,可能出现像素重复填充的问题,需要进行额外的处理。
边界填充算法边界填充算法是另一种常见的多边形填充算法。
与扫描线填充算法不同的是,边界填充算法是从多边形的边界出发,向内部填充颜色。
该算法的基本思想是对多边形的每条边进行填充,最终得到多边形的填充区域。
具体步骤如下:1.遍历多边形的每条边,保存每条边的起点和终点。
2.对于每个边,根据设计要求进行颜色填充。
3.对于多边形内部的区域,根据边界的颜色填充。
边界填充算法的优点是适用于复杂形状的多边形,无需处理边界相交的问题。
然而,该算法的实现相对复杂,需要处理边界的细化以及边缘像素重复填充的问题。
适用场景不同的多边形填充算法在不同场景下有不同的适用性。
任意多边形区域的快速填充算法一、前言任意多边形区域的快速填充算法是计算机图形学中的一个重要问题,其应用广泛,例如在计算机游戏、数字地图等领域中都有广泛的应用。
本文将介绍几种常见的任意多边形区域的快速填充算法,包括扫描线算法、边界填充算法、种子填充算法等。
二、扫描线算法扫描线算法是一种基于扫描线原理的填充算法,其基本思想是将区域划分为若干个水平方向上的扫描线,然后在每条扫描线上找到交点,并根据交点进行填充。
具体步骤如下:1. 将多边形顶点按照纵坐标从小到大排序;2. 从最小纵坐标开始,依次向上扫描每条水平方向上的线段;3. 对于每条水平方向上的线段,找到与之相交的多边形边界,并记录下所有交点;4. 根据相邻两个交点之间是否为奇数个来确定是否需要进行填充。
三、边界填充算法边界填充算法也是一种常见的任意多边形区域的快速填充算法,其基本思想是通过递归调用来进行填充。
具体步骤如下:1. 对于每个多边形边界上的像素点,将其标记为“边界点”;2. 从任意一个未填充的内部像素点开始,向四周搜索,如果遇到“边界点”则停止搜索,并将搜索路径上的所有像素点标记为已填充;3. 重复步骤2直到所有内部像素点都被填充。
四、种子填充算法种子填充算法也是一种常见的任意多边形区域的快速填充算法,其基本思想是通过找到一个内部像素点作为“种子”,然后向四周扩散进行填充。
具体步骤如下:1. 随机选择一个内部像素点作为“种子”,并将其标记为已填充;2. 向四周搜索,如果遇到未被标记为已填充的像素,则将其标记为已填充,并加入到待处理列表中;3. 重复步骤2直到待处理列表为空。
五、总结以上介绍了几种常见的任意多边形区域的快速填充算法,每种算法都有其特定的优缺点,选择合适的算法需要根据具体的应用场景进行考虑。
在实际应用中,还需要考虑算法的效率、稳定性、可扩展性等方面的问题。