轴对称和坐标变化
- 格式:pptx
- 大小:361.64 KB
- 文档页数:18
轴对称与坐标变化【教学建议】 此处内容主要用于教师课堂的精讲,每个题目结合试题本身、答案和解析部分,教师有的放矢的进行讲授或与学生互动练习。
类型一 轴对称与坐标变化 【题干】设点P 的坐标是(a,b ) (1)关于x 轴对称的点的坐标为__________,简记为关于横轴对称,“横”不变“纵”变;(2)关于y 轴对称的点的坐标为_________,简记为关于纵轴对称,“纵”不变“横”变.【答案】(1)(a,-b ) (2)(-a,b )【解析】点关于坐标轴对称时的变化特点【题干】已知点P(2a-3,3),点A (-1,3b+2),(1)如果点P 与点A 关于x 轴对称,那么a+b= ;(2)如果点P 与点A 关于y 轴对称,那么a+b= .【答案】3732-,【解析】(1)已知点P(2a-3,3)和点A(-1,3b+2)关于x 轴对称 关于x 轴对称的点,横坐标相等,纵坐标互为相反数. 所以,2a-3= -1,-3=3b+2 所以,a=1,b =35-所以,a+b =32-(2)同理a+b=37【题干】4=,则点A (1,a )关于y 轴的对称点为B ,则点B 的坐标为___________. 【答案】(-1,-1) 或(-1,7) 【解析】4=,∴|a ﹣3|=4,三、例题精析 例题1例题2例题3∴a ﹣3=±4,∴a =7或﹣1,∴A (1,7)或(1,﹣1),∴点B (﹣1,7)或(﹣1,﹣1).故答案为(﹣1,﹣1) 或(﹣1,7).类型二 轴对称作图【题干】如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△111C B A ,并写出点1A 的坐标;(2)画出△111C B A 绕原点O 旋转180°后得到的△222C B A ,并写出点2A 的坐标.【答案】(1)图略A 1(2,—4)(2)图略A 2(—2,4)【解析】 由点对称作图形的轴对称 类型三 坐标系内的规律探究例5.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.例题1【答案】()4044,0【详解】解:由题意可知:正方形的边长为2,∵A (2,0),B (0,2),C (2,2),P 1(4,0),P 2(0,﹣4),P 3(﹣6,2),P 4(2,10),P 5(12,0),P 6(0,-12)…可发现点的位置是四个一循环,每旋转一次半径增加2,2021÷4=505……1,故点2021P 在x 轴正半轴,OP 的长度为2021×2+2=4044,即:P 2021的坐标是(4044,0),故答案为:(4044,0).类型四 平面直角坐标系综合问题例6.在平面直角坐标系中,已知点(6,510)−+M a a .(1)若点M 在y 轴上,求a 的值;(2)若点M 到x 轴的距离为5,求点M 的坐标;(3)若点M 在过点(2,4)A −且与y 轴平行的直线上,求点M 的坐标.【答案】(1)6a =;(2)点M 的坐标为(7,5)−或(9,5)−−;(3)点M 的坐标为(2,50)【详解】(1)∵M 点在y 轴上,∴a -6=0∴a =6;(2)∵M 点到x 轴的距离为5∴|5a +10|=5∴5a +10=±5解得:a =-3或a =-1故M 点坐标为(-9,-5)或(-7,5);(3)∵M 点在过点A (2,-4)且与y 轴平行的直线上∴a -6=2∴a =8∴M 点坐标为(2,50).类型五 轴对称与坐标变化作图例7.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标.【答案】(1)见解析;(2)见解析;P ()2,0【详解】(1)如图所示,111A B C △即为所求.2,0.(2)如图所示,点P即为所求,其坐标为()【题干】已知点P(2a-3,3),点A (-1,3b+2),(1)如果点P 与点A 关于x 轴对称,那么a+b= ;(2)如果点P 与点A 关于y 轴对称,那么a+b= .【题干】4=,则点A (1,a )关于y 轴的对称点为B ,则点B 的坐标为___________.类型二 轴对称作图【题干】如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△111C B A ,并写出点1A 的坐标;(2)画出△111C B A 绕原点O 旋转180°后得到的△222C B A ,并写出点2A 的坐标.类型三 坐标系内的规律探究例5.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.例题3例题1故答案为:(4044,0).类型四 平面直角坐标系综合问题例6.在平面直角坐标系中,已知点(6,510)−+M a a .(1)若点M 在y 轴上,求a 的值;(2)若点M 到x 轴的距离为5,求点M 的坐标;(3)若点M 在过点(2,4)A −且与y 轴平行的直线上,求点M 的坐标.类型五 轴对称与坐标变化作图例7.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标.。
轴对称与坐标的变化x轴y轴轴对称是指一个图形或物体在某条直线上对称,即通过这条直线可以将图形或物体分为两部分,两部分完全重合。
在平面几何中,轴对称通常是指对称于x轴、y轴或其他直线的图形。
首先,我们来看x轴和y轴对称。
x轴是指平面上的一条水平直线,通常表示为y=0;y轴是指平面上的一条垂直直线,通常表示为x=0。
对于一个图形或物体来说,如果它关于x轴对称,那么它的上下两部分将完全重合;如果它关于y轴对称,那么它的左右两部分将完全重合。
以一个简单的矩形为例,如果矩形关于x轴对称,那么矩形的上下两边将是对称的,也就是上边与下边完全重合;如果矩形关于y轴对称,那么矩形的左右两边将是对称的,也就是左边与右边完全重合。
在平面几何中,轴对称可以用来判断图形的性质和解决一些几何问题。
比如,可以利用轴对称性质判断一个图形是否是对称图形,通过寻找对称轴可以更方便地对图形进行分析和计算。
除了x轴和y轴,平面上还可以存在其他直线作为对称轴。
这时,轴对称就是指图形或物体关于这条直线对称。
例如,对于圆形来说,它关于任何直径线都是对称的;对于正方形来说,它关于对角线也是对称的。
轴对称对于物体的设计和制作也有很大的作用。
在建筑设计中,常常利用轴对称原理来设计对称美观的建筑;在机械制造中,也常常利用轴对称来确保产品的理想性能。
在坐标系中,x轴和y轴分别是平面上两个互相垂直的轴线。
它们交叉的点被称为原点(0,0),x轴的正方向为向右,负方向为向左;y轴的正方向为向上,负方向为向下。
坐标系中其他点的坐标可以通过与x轴和y轴的交点距离和方向来表示。
在使用坐标系进行计算和分析时,轴对称可以帮助我们确定图形或物体的位置和特征。
通过观察图形关于x轴或y轴的对称性质,可以简化计算和分析的过程。
总之,轴对称和坐标的变化在几何中起着重要的作用。
轴对称可以帮助我们理解图形的性质和解决几何问题,而坐标系则为我们提供了一种方便的计算和分析工具。
通过深入理解轴对称和坐标的变化,我们可以更好地理解和应用几何学。
人教版五四制初二上册数学知识点归纳
人教版五四制初二上册数学知识点归纳主要包括以下几个方面:
1. 轴对称与坐标变化:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
2. 一次函数:函数的一般定义是,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y 是x的函数,其中x是自变量。
表示函数的方法一般有:列表法、关系式法和图象法。
特别的,若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,当b=0时,称y是x
的正比例函数。
正比例函数y=kx的图像是一条经过原点(0,0)的直线。
3. 角平分线:角平分线上的点到角的两边的距离相等。
这是角平分线的性质定理。
此外,角的内部到角的两边距离相等的点在角的平分线上。
这是角平分线的性质定理的逆定理。
请注意,这只是初二上册部分知识点,建议查阅教科书目录或咨询教师获取完整的知识点归纳。
第三章位置与坐标3. 轴对称与坐标变化一、学生起点分析学生的知识技能基础:学生已学习了运用多种方法确定物体的位置,使学生感受到了丰富的确定位置的现实背景;系统学习了平面直角坐标系的基本概念,能在平面直角坐标系中准确地表示物体的位置,清楚地认识了点和坐标之间的对应关系;能确定点的坐标及根据坐标描点、进而连线形成图形。
学生的活动经验基础:学生有了一定的合作学习的基础,有了一定的学习能力,教学中要安排一定的合作交流与自主学习的机会,加强学生之间的交流。
二、学习任务分析本节课学生通过“坐标与轴对称”这样一个趣味性较强的话题,深切感受图形坐标的变化与图形形状的变化之间的密切关系,也进一步加深对“数形结合思想”的认识.具体的教学目标如下:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学方法:引导发现法三、教学过程设计第一环节创设问题情境,引入新课『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。
我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
《轴对称与坐标变化》说课稿一、内容与内容解析本节课是北师大版八年级数学上册第三章第三节的内容。
本节课的内容体现了轴对称在平面直角坐标系中的应用,从数的角度刻画了轴对称的内容。
《标准》要求学生感受图形的变化与相应各点的坐标变化之间的关系,建立“数”与“形”之间的联系,发展学生的数形结合意识。
正是基于这一点,教科书设计了本节内容。
教材从观察入手,归纳得出坐标平面上一个点关于X轴或Y轴轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于X轴或Y轴成轴对称。
本节课目的在于让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来。
二、目标与目标解析—(1、了解数与形之间的联系—经历轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识,初步建立几何直观。
—2、理解图形上任意点坐标的变化与关键点坐标之间的关系,能将图形坐标的变化与图形形状的变化之间的关系巧妙的结合在一起—3、掌握关于(x轴,y轴)对称的两个点的坐标的变化规律—能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
(二)、重点难点重点:经历经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
二、教学问题诊断分析根据以往教学经验,学生在用数学语言归纳表述关于图形的轴对称变化与点的坐标变化之间的关系时,可能会存在表述不清楚,不准确和坐标与图形联系不起来的现象。
需要多加练习,从而规范学生数学语言表达的完整性,准确性。
所以本节课的难点是,由坐标的变化探索新旧图形之间的变化过程,发展形象思维能力和数形结合的意识,培养学生数学语言的准确性。
在小组讨论之前,应该留给学生充分讨论时间,不能让一些思维活跃的学生回答代替其他学生的思考,忽略了一些学生的想法疑问。
学生交流合作中注意的问题及对困难学生的帮助等,要及时处理。
第三章 位置与坐标 5.3 轴对称与坐标变化课程学习要求知识目标:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识.2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系.能力目标:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。
2、通过图形的平移,轴对称等,培养学生的探索能力。
情感目标:1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。
重点难点剖析1. 经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识.【剖析】(1)图形左右平移纵坐标不变,横坐标左减右加; (2)图形上下平移横坐标不变,纵坐标上加下减; 2. 由坐标的变化探索新旧图形之间的变化. 【剖析】(1)注意图形变化前后是平移、轴对称还是伸长压缩典型例题展示重难点题讲解1.会做一个图形关于x 轴、y 轴的对称图形【例1】作字母H 关于y 轴对称的图形,并写出所得图形相应各点的坐标-2-1432y x12341O-1-2-3-4A B CD E F【解】作出字母H 关于y 轴对称的图形如图所示,A 、B 、C 、、D 、E 、F 相对应的点的坐标分别是(3,3);(3,2);(3,1);(1,3);(1,2);(1,1);【点拨】 解决此类问题关键要找准相对应的点的坐标,并在坐标系中找点,并按要求做出图形.2.平移与对称【例2】左右两幅图案关于y 轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3).嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标.【解】1)左图案中的左眼坐标为(-4,3),右眼坐标为(-2,3),嘴角的左端点坐标为(-4,1),右端点坐标为(-2,1).【变式】(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,那么左右眼睛的坐标将发生什么变化?(2)如果作图中的右图案关于x轴的轴对称图形,那么左右眼睛的坐标将发生什么变化?(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么左右眼睛的坐标将发生什么变化?【点拨】(1)根据题意可知,右图案沿x轴正方向平移1个单位长度,所以每一个点的横坐标都加1,纵坐标不变.因此左、右眼睛的坐标分别为(3,3),(5,3).(2)如果作右图案关于x轴的轴对称图形,根据关于x轴对称的两图形中对应点的特点可知,横坐标不变,纵坐标变为原纵坐标的相反数,所以右图案中左、右眼睛的坐标原来为(2,3),(4,3),现在应变为(2,-3),(4,-3).(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么图案中的每一点的纵坐标都增加2,横坐标不变.所以左、右眼睛的坐标为(2,5),(4,5).易错题型讲解【易错点1】上下左右平移点的坐标变化特点【例1】将点A(3,-2)向左平移4个单位,再向上平移3个单位后点的坐标是(,)【正解】平移后点的坐标是(-1,1)【错因分析】把握不住坐标系内点的平移特点,左右平移时点的纵坐标不变,上下平移时点的横坐标不变.中考真题讲解A B,则【例1】(2009威海)如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至11的值为()a bA.2 B.3 C.4 D.5【解】将线段AB 平移至11A B ,从坐标系中可以看出线段向上平移1个单位,向右平移1个单位,所以a=1,b=1,所以a+b=2,故应该选择A 【点拨】要看清楚图形在坐标系中是如何让变化的,依据图形在坐标系中的变化规律来解决问题.【例2】2009襄樊市)如图3,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是( ) A .()01-, B .()11, C .()21-,D .()11-,【解】:本题考查坐标与平移,由图3可知点B 的坐标是(-1,1),将ABC △向右平移两个单位长度得到A B C '''△,所以点B '的坐标是(1,1),所以点B '关于x 轴对称的点的坐标是(1,-1),故选D.【点拨】在解决此类问题时,一是要先找准平移后点的坐标,二是要依据点的关于对称轴对称的变化规律写出坐标即可.综合技能探究【例1】在方格纸上建立直角坐标系,把下列点找出并依次用线段将这些点连接起来坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)-2-1O 14321xy23456【思考一】将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),yO (01),(20)A ,1(3)A b ,1(2)B a ,x(4,-2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?-4-3-2-1O 14321xy2345657891011-4-3-2-1O 14321xy2345657891011【思考二】将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化? (2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化?-4-3-2-1O 14321xy2345657891011-4-3-2-1O 14321xy2345678910115678【点拨】上面的两种变化情况来看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的2倍。