4 晶粒长大
- 格式:doc
- 大小:108.50 KB
- 文档页数:5
5 材料的形变和再结晶材料在加工制备过程中或是制成零部件后的工作运行中都要受到外力的作用。
材料受力后要发生变形,外力较小时产生弹性变形;外力较大时产生塑性变形,而当外力过大时就会发生断裂。
本章主要内容:一.晶体的塑性变形单晶体的塑性变形多晶体的塑性变形合金的塑性变形塑性变形对材料组织与性能的影响二.回复和再结晶冷变形金属在加热时的组织与性能变化回复再结晶晶粒长大再结晶织构与退火孪晶5.1 晶体的塑性变形塑性加工金属材料获得铸锭后,可通过塑性加工的方法获得一定形状、尺寸和机械性能的型材、板材、管材或线材。
塑性加工包括锻压、轧制、挤压、拉拔、冲压等方法。
金属在承受塑性加工时,当应力超过弹性极限后,会产生塑性变形,这对金属的结构和性能会产生重要的影响。
5.1.1 单晶体的塑性变形单晶体塑性变形的两种方式:滑移孪生滑移:滑移是晶体在切应力的作用下,晶体的一部分相对于另一部分沿着某些晶面和晶向发生相对滑动。
滑移线:为了观察滑移现象,可将经良好抛光的单晶体金属棒试样进行适当拉伸,使之产生一定的塑性变形,即可在金属棒表面见到一条条的细线,通常称为滑移线.滑移带:在宏观及金相观察中看到的滑移带并不是单一条线,而是由一系列相互平行的更细的线所组成的,称为滑移带。
滑移系:塑性变形时位错只沿着一定的晶面和晶向运动,这些晶面和晶向分别称为“滑移面”和“滑移方向”。
一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系。
滑移的临界分切应力τk晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可以首先发生滑移,该分切应力称为滑移的临界分切应力。
滑移的特点晶体的滑移并不是晶体的一部分相对于另一部分同时做整体的刚性的移动,而是通过位错在切应力作用下沿着滑移面逐步移动的结果,因此实际滑移的临界分切应力τk 比理论计算的低得多。
(滑移面为原子排列最密的面)单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动。
针对常州永青铸件晶粒粗大,中挖研究院与华强研究院一直在进行研究分析,主要原因有以下几方面造成:1)化学成份不合理;2)浇注系统设计不合理;3)热处理工艺不不合理;针对不同原因,我们主要做了如下工作;1)调整化学成份,严格控制化学成份,提高合金元素Ni含量(含量由0.2调整至0.4以上),改善晶粒大小,提高铸件冲击韧性;已于常州永青与12年4月批量实施;2)改善浇注系统,局部增加冷铁,改善冷却速度,以细化晶粒;已于常州永青与12年4月批量实施;4)改善热处理方式,延长保温时间和改善冷却方式以细化晶粒;已于常州永青与12年5月批量实施;5)改善热处理方式,热处理工艺有正火调整至正火加调质,使晶粒更细化;湖州运河从产品试制一致采用;6)7)在铸钢的熔化和脱氧操作中,加入合金元素的元素,因此和锻钢相比,铸钢不太容易形成品粒粗大。
因成分而引起品粒粗大的铸钢件,可通过退火或正火处理得到细化。
是指经过机械工或进行断口检验时,显示出晶粒组织过分粗大而不适合应用的缺陷,这种晶粒粗大的组织,可能是遍布于铸件整体,也可能发生于铸件的局部。
从本质上讲,晶粒粗大缺陷是一种冶金缺陷。
笔者根据多年的生产实践并参阅有关资料,谈谈铸件晶粒粗大缺陷产生的原因及防止措施。
1.铸件结构和工艺设计(1)铸件截面差异过,会因为较厚的截面冷却缓慢而造成该处晶粒粗大。
灰铸铁等对截面变化十分敏感的金属,更容易产生此类缺陷。
防止产生这类缺陷的有效方法是避免铸件截面尺寸过分悬殊,但这种途径有时是铸造工作者所无能为力的。
因而就铸造本身言,可通过采取设置冷铁、控制浇注温度或通过选择合适的浇汁系统来减少这类问题的发生,降低这类缺陷的严重程度。
采用冷铁可加快铸件较厚截面的冷却速度;浇注温度过高,会使这类问题更为严重,应予以避免;通过调节、修正浇注系统设计,使温度低的金属熔液位于铸件截面较厚的部位,并在铸件的厚截面处设计最有效的冒口,以尽可能减小冒口的尺寸。
§ 4晶粒长大晶粒长大的驱动力是晶界能的下降,即长大前后的界面能差值。
一、晶粒的正常长大1.定义:指晶体中有许多晶粒获得长大条件,晶粒的长大是连续地,均匀地进行,晶粒长大过程中晶粒的尺寸是比较均匀的,晶粒平均尺寸的增大也是连续的。
2.晶粒长大的方式(1)弯曲的晶界总是趋向于平直化,即向曲率中心移动以减少界面积,同时,大角度晶界的迁移率总是大于小角度晶界的迁移率。
当晶界为三维空间的任意曲面时,作用在单位界面上的力P:晶界迁移的驱动力疗:晶界单位面积的界面能R1、R2:曲面的两个主曲率半径如果空间曲面为球面时,R1=R2,即:晶界迁移的驱动力与其曲率半径P为:R成反比,与界面能成正比。
(2)晶界总是向角度较锐的晶粒方向移动, 力图使三个夹角都等于120度。
® A闘爲鼻商世率中心若向于平J化在三维坐标中,晶粒长大最后稳定的形状是正十四面体。
3 .影响晶粒长大(即晶界迁移率)的因素(1)温度 温度越高,晶粒长大速度越快,晶粒越粗大RT}G:晶界迁移速度G0:常数QG 晶界迁移的激活能(2) 第二相晶粒长大的极限半径K :常数 r :第二相质点半径 f :第二相的体积分数当界面张力平衡时: 因为大角度晶界 在二维坐标中,晶界边数少于数大于6的晶粒,晶界 向内凹进,逐渐长大,当晶粒的边数为TA=TB=TC 而 A+B+C=360度 /• A=B=C=120度6的晶粒,其晶界向外凸出,必然逐渐缩小,甚至消失,而边6时,处于稳定状态。
1■兀■兀Sin B sm C7,• •第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能力越强。
设第二相颗粒为球形,对晶界的阻力为 F ,与驱动力平衡F = Z TT cos(^-<7-cospO°-/J)6C0妙—妙 (1) a 角只取决于第二相颗粒与晶粒间的表面张力,可看作恒定值,现将( 竺0令却 ,可得: 盂+ (2)F 住=叫TP (1 + COE 氐) (3) 设单位体积中有NV 个质点,其体积分数为f4=一曲3 (5)的正方体,所有中心位于这个 1 X 1 X 2r 体积内半径为r 的第二相颗分晶界交截,单位面积晶界将与1 X 1X 2r X NV 个晶粒交截。
第六章 变形金属与合金的回复与再结晶本章教学目的:1 揭示形变金属在加热过程中组织和性能变化的规律;2 揭示再结晶的实质3 说明热加工与冷加工的本质区别以及热加工的特点。
教学内容:(1)变形金属在退火过程中(回复,再结晶以及晶粒长大)过程的组织与性能变化;(2)影响再结晶的因素;(3)再结晶晶粒大小及控制;(4)热加工与冷加工重点:(1)回复与再结晶的概念和应用;(2)临界变形度的概念;(3)再结晶晶粒度的控制;(4)热加工与冷加工的区别。
难点:(1)再结晶形核机制与再结晶动力学;(2)再结晶晶粒的二次长大机理§6-1变形金属与合金在退火过程中的变化金属经冷塑性变形后,内部组织和各项性能均发生相应变化,而且由于位错等结构缺陷密度的增加以及畸变能的升高,使其处于热力学不稳定状态。
当变形金属加热时,通过原子扩散能力的增加,有助于促进向低能量状态的转变。
一、显微组织的变化第一阶段:显微组织基本上未发生变化,其晶粒仍保持纤维状或扁平状变形组织,称回复阶段。
第二阶段:以新的无畸变等轴小晶粒逐渐取代变形组织,称为再结晶阶段。
第三阶段:上述小晶粒通过互相吞并方式而长大,直至形成较为稳定的尺寸,称为晶粒长大阶段。
二、储存能及内应力的变化当变形金属加热到足以引起应力松弛的温度时,其中的储存能将释放出来。
回复阶段释放的储存能很小三、机械性能的变化规律回复阶段硬度变化很小,约占总变化的1/5,再结晶阶段下降较多,强度与硬度有相似的变化规律。
因为回复阶段仍保持很高的位错密度。
在再结晶阶段,硬度与强度显著下降,塑性大大提高。
四、其它性能的变化1、电阻的变化电阻的回复阶段已表现出明显的下降趋势。
点缺陷对电阻的贡献远大于位错,而回复阶段点缺陷的密度发生显著的减小。
2、密度的变化再结晶阶段密度急剧增高。
五、亚晶粒尺寸在回复阶段前期,亚晶粒尺寸变化不大,但在后期,尤其在接近再结晶温度时,晶粒尺寸显著增大。
§6-2 回复一、退火温度和时间对回复过程的影响回复是指冷塑性变形的金属在加热时,在光学显微组织发生改变之前所产生的某些亚结构和性能的变化过程。
扩散:热激活的院子通过自身的热震动克服束缚而迁移它处的过程。
超结构:在某些合金“固溶体”中,当缓慢冷却达到一定温度时,原来呈无序分布的溶质原子将变为有序分布,即占据溶剂晶体点阵中一定的位置。
这种固溶体称为有序固溶体,其所形成的晶体点阵称为超结构。
随着超结构的形成,合金的性能发生突变,如硬度增高而电阻、塑性降低等。
自扩散:不依赖于浓度梯度,而仅由热振动而产生的扩散。
互扩散:在置换式固溶体中,两组元互相扩散。
间隙扩散:这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。
反应扩散: 伴随有化学反应而形成新相的扩散称为反应扩散。
空位扩散:扩散原子从正常位置跳动到邻近的空位,即通过原子与空位交换位置而实现扩散。
每次跳迁须有空位迁移与之配合。
下坡扩散:组元从高浓度区向低浓度区迁移的扩散的过程称为下坡扩散。
上坡扩散:组元从低浓度区向高浓度区迁移的扩散的过程称为上坡扩散。
稳态扩散:扩散组元的浓度只随距离变化,而不随时间变化。
非稳态扩散: 扩散组元的浓度不仅随距离x 变化,也随时间变化的扩散称为非稳态扩散。
扩散系数:相当于质量浓度为一时,单位时间内的扩散通量。
互扩散系数:在互扩散当中,用来代替两种原子的方向相反的扩散系数D1、D2。
体扩散:物质在晶体内部的迁移过程。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。
当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时。
晶界扩散:是指原子沿着晶界渗入晶粒。
扩散退火:生产上常将铸件加热到固相线以下100-200℃长时间保温,以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处理工艺称做扩散退火。
柯肯达尔效应: 反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散速率快的组元一侧移动。
层错能:金属结构在堆垛时,没有严格的按照堆垛顺序,形成堆垛层错,层错是一种晶格缺陷它破坏了晶格的周期完整性,引起能量升高,通常把单位面积层错所增加的能量称为层错能。
§4 晶粒长大
晶粒长大的驱动力是晶界能的下降,即长大前后的界面能差值。
一、晶粒的正常长大
1.定义:指晶体中有许多晶粒获得长大条件,晶粒的长大是连续地,均匀地进行,晶粒长大过程中晶粒的尺寸是
比较均匀的,晶粒平均尺寸的增大也是连续的。
2.晶粒长大的方式
(1)弯曲的晶界总是趋向于平直化,即向曲率中心移动以减少界面积,同时,大角度晶界的迁移率总是大于小角
度晶界的迁移率。
当晶界为三维空间的任意曲面时,作用在单位界面上的力P为:
P:晶界迁移的驱动力
:晶界单位面积的界面能
R1、R2:曲面的两个主曲率半径
如果空间曲面为球面时,R1=R2 ,即:晶界迁移的驱动力与其曲率半径R成反比,与界面能成正比。
(2)晶界总是向角度较锐的晶粒方向移动,力图使三个夹角都等于120度。
,
当界面张力平衡时:因为大角度晶界TA=TB=TC,而 A+B+C=360度∴A=B=C=120度
在二维坐标中,晶界边数少于6的晶粒,其晶界向外凸出,必然逐渐缩小,甚至消失,而边数大于6的晶粒,晶界
向内凹进,逐渐长大,当晶粒的边数为6时,处于稳定状态。
在三维坐标中,晶粒长大最后稳定的形状是正十四面体。
3.影响晶粒长大(即晶界迁移率)的因素
(1)温度温度越高,晶粒长大速度越快,晶粒越粗大
G:晶界迁移速度
G0:常数
QG:晶界迁移的激活能
(2)第二相晶粒长大的极限半径
K:常数
r:第二相质点半径
f:第二相的体积分数
∴第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能力越强。
设第二相颗粒为球形,对晶界的阻力为F,与驱动力平衡
(1)
α角只取决于第二相颗粒与晶粒间的表面张力,可看作恒定值,现将(1)式对φ求极大值,
令,可得:(2)
假设在单位面积的晶界面上有NS个第二相颗粒,其半径都为r,则总阻力
(3)
设单位体积中有NV个质点,其体积分数为f
(4)
(5)
取单位晶界面积两侧厚度皆为r的正方体,所有中心位于这个1×1×2r体积内半径为r的第二相颗粒,都将与这部
分晶界交截,单位面积晶界将与1×1×2r×NV个晶粒交截。
将(4)、(5)式代入(3)式
(6)
这个总阻力与晶界驱动力平衡
∴
整理得:(7)
可看作常数,令
∴(8)
(3)可溶解的杂质或合金元素阻碍晶界迁移,特别是晶界偏聚现象显著的元素,其阻碍作用更大。
但当温度很高
时,晶界偏聚可能消失,其阻碍作用减弱甚至消失。
二、晶粒的异常长大(二次再结晶)
1.定义:将再结晶完成后的金属继续加热至某一温度以上,或更长时间的保温,会有少数几个晶粒优先长大,成
为特别粗大的晶粒,而其周围较细的晶粒则逐渐被吞食掉,整个金属由少数比再结晶后晶粒要大几十倍甚至几百
倍的特大晶粒组成。
2.驱动力:同正常晶粒长大一样,是长大前后的界面能差
3.产生条件:正常晶粒长大过程被弥散的第二相质点或杂质、织构等所强烈阻碍。
4. 对性能的影响:得到粗大组织,降低材料的室温机械性能,大多数情况下应当避免。