奥氏体晶粒长大
- 格式:ppt
- 大小:614.50 KB
- 文档页数:19
阻止奥氏体晶粒长大的元素奥氏体(austenite)晶粒长大是金属材料中一个重要的结构性能问题,对材料的性能及其使用寿命有着重要影响。
奥氏体晶粒长大应该被历史悠久的科学工程师们关注,他们认为它是一个令人困惑的现象,这种现象可能会限制材料的机械性能,并影响材料的结构稳定性。
因此,有必要一探究竟,研究出阻止奥氏体晶粒长大的元素。
奥氏体晶粒的长大主要是由材料的温度和环境中的原子组成引起的,这就形成了由温度和原子元素组成的温度-元素空间,通过这个空间,我们可以探索出通过控制材料温度和环境中的特定元素组合,可以有效阻止奥氏体晶粒的长大。
首先,可以通过控制材料的温度和气压来阻止奥氏体晶粒的长大。
温度越高,材料的晶粒就越容易放大,因此需要降低材料的温度,以防止晶粒的长大。
此外,气压的影响也不容忽视。
当材料的温度高于饱和点时,气压的降低将阻碍晶粒的生长。
其次,材料本身含有的元素成分也会影响奥氏体晶粒的生长。
含有高含量碳或其他合金元素的金属材料,其奥氏体晶粒的长大会比纯金属材料慢。
相反,有些元素,比如锰,镍,铬等,可以使金属材料的晶粒长大加快。
最后,环境中的原子组成也会影响金属材料中奥氏体晶粒长大的速度。
环境中的气体组成,比如氧气,氮气等,都可以抑制金属材料中奥氏体晶粒长大。
同时,环境中的水份也会影响金属材料中奥氏体晶粒的生长,如果水份太多,则会加速金属材料中奥氏体晶粒的生长。
总之,阻止奥氏体晶粒长大的元素有很多,这些元素可以通过控制材料的温度和气压,以及材料本身的元素组成及环境中的原子组成来实现。
对于不同的应用场景,可以采用不同的方法来控制奥氏体晶粒的生长,以达到预期效果。
进一步说,选择正确的元素组合可以抑制金属材料中奥氏体晶粒的生长,从而提高材料的性能及其使用寿命。
奥氏体长大过程中扩散的作用一、奥氏体长大的特点奥氏体的长大是指在合金中奥氏体相的体积分数增加,晶粒尺寸增大的过程。
奥氏体的长大是通过扩散作用实现的,其主要特点如下:1. 扩散是原子迁移的过程,需要在一定温度下进行。
常见的扩散机制有普通扩散、差别扩散和激活扩散。
2. 扩散速率与温度、扩散距离和扩散物种的浓度梯度有关。
温度越高,扩散速率越快;扩散距离越大,扩散速率越慢;浓度梯度越大,扩散速率越快。
3. 扩散过程是一个热力学平衡过程,会受到界面能的影响。
界面能越高,扩散速率越慢。
二、影响奥氏体长大的因素奥氏体长大过程中,扩散是一个关键的因素,其扩散速率受到多种因素的影响,主要包括以下几个方面:1. 温度:温度是影响扩散速率的重要因素,温度越高,原子的热运动越剧烈,扩散速率越快。
2. 扩散距离:扩散距离是指原子从一个位置迁移到另一个位置所需的距离,扩散距离越大,扩散速率越慢。
3. 扩散物种的浓度梯度:浓度梯度越大,扩散速率越快。
如果合金中某一种原子的浓度较高,那么该原子会向浓度较低的区域扩散。
4. 界面能:界面能是指两种不同相之间的界面能量,界面能越高,扩散速率越慢。
5. 合金成分:合金中的元素种类和含量对奥氏体长大过程中的扩散速率有重要影响。
不同元素的扩散速率不同,元素含量的变化也会影响扩散速率。
三、奥氏体长大过程中的扩散作用在奥氏体长大过程中,扩散是实现晶粒长大的重要机制之一。
扩散作用使得奥氏体中的原子重新排列,从而形成更大的晶粒。
扩散作用的具体过程如下:1. 温度升高后,原子的热运动加剧,使得原子更容易从一个位置迁移到另一个位置。
同时,界面能降低,使得原子更容易跨越晶界。
2. 在高温下,奥氏体中的碳原子开始从高浓度区域向低浓度区域扩散。
扩散过程中,碳原子会与铁原子结合形成渗碳体。
3. 随着时间的推移,渗碳体逐渐增多,晶界逐渐消失,奥氏体晶粒逐渐长大。
4. 当温度降低到一定程度时,奥氏体晶粒的长大停止,形成了具有一定尺寸和形状的奥氏体晶粒。
有关国家标准规定,把钢加热到930℃±10℃,保温8h后的奥氏体晶粒度即为本质晶粒度。
本质晶粒度为1~4级的钢被认为晶粒长大倾向大,称为本质粗晶粒钢;本质晶粒度为5~8级的钢被认为晶粒长大倾向小,称为本质细晶粒钢。
奥氏体化温度越高,保温时间越长,奥氏体晶粒长大越明显。
随着奥氏体中含碳量的增加,奥氏体晶粒长大倾向增大。
本质晶粒度只表示钢在一定温度范围内晶粒长大的倾向性。
当加热温度超过一定范围时,本质细晶粒钢的奥氏体晶粒也可能迅速长大,甚至超过本质粗晶粒钢。
一般用铝脱氧的钢多为本质细晶粒钢,而只用锰硅脱氧的钢为本质粗晶粒钢。
沸腾钢一般为本质粗晶粒钢,而镇静钢一般为本质细晶粒钢。
需经热处理的零件一般都采用本质细晶粒钢制造。
钢的晶粒度有以下几种:
(1)本质晶粒度指钢加热到930±10℃奥氏体化并保温充分长的时间后所获得的奥氏体晶粒度。
本质晶粒度表示钢的奥氏体晶粒在规定温度下的长大倾向,是制定钢的热处理规范的重要参考数据。
(2)实际晶粒度指钢件在最后一次热处理(退火、正火、淬火)过程中,加热奥氏体化并保温后所实际得到的晶粒度;如为热轧(锻)材时,则指热轧终了时,其中奥氏体的晶粒度。
实际晶粒度对钢的性能有密切的影响。
(3)起始晶粒度是钢加热奥氏体化过程中,最初形成奥氏体晶粒的晶粒度。
奥氏体晶粒粗化现象
奥氏体晶粒粗化现象是金属材料在高温处理过程中常见的一种
现象。
在高温条件下,奥氏体晶粒会逐渐长大,最终导致材料的机械性能下降。
这种现象通常是由于热处理过程中温度控制不当或者保温时间过长引起的。
在金属材料加工过程中,奥氏体晶粒的大小是非常重要的。
细小的晶粒可以提高材料的强度和韧性,而粗大的晶粒则会导致材料变脆。
因此,控制奥氏体晶粒的大小是金属材料加工中的一项重要技术。
为了防止奥氏体晶粒粗化,需要采取一系列措施。
首先,要严格控制热处理温度和保温时间,避免长时间处于高温状态。
其次,可以采用一些特殊的热处理工艺,如等温淬火、循环淬火等,来细化奥氏体晶粒。
此外,还可以通过合金化、表面涂层等方法来提高材料的抗晶粒粗化能力。
总之,奥氏体晶粒粗化现象是金属材料加工中需要关注的一个重要问题。
通过合理的热处理工艺和材料选择,可以有效地防止奥氏体晶粒粗化,提高材料的机械性能。
由Fe-Fe3C相图可知,温度在A1以下钢的平衡组织为铁素体和渗碳体,当温度超过A1(共析钢)、A3(亚共析钢)或Acm(过共析钢)以上,钢的组织为单相奥氏体组织。
单一奥氏体是如何形成的?实验证明,奥氏体的形成也是由形核和长大两个步骤所组成。
现以共析钢为例说明奥氏体的形成过程。
图2-1为共析钢的奥氏体形成过程示意图。
(a)奥氏体形核(b)奥氏体长大(c)剩余Fe3C溶解 (d)奥氏体均匀化图2-1 共析钢的奥氏体形成过程示意图假设共析钢的原始组织是片状珠光体,当加热到Ac1温度以上并保温一定时间后,由于珠光体中铁素体和F e3C相界面上碳浓度分布不均匀,位错密度较高,原子排列不规则,处于能量较高状态,容易获得奥氏体形核所需的浓度起伏、结构起伏和能量起伏。
所以奥氏体晶核优先在相界面上形成。
当然,珠光体群边界也可能成为奥氏体的形核部位。
奥氏体形核后便开始长大。
奥氏体晶核形成以后,它的一侧与铁素体相邻,而另一侧与Fe3 C相邻。
假设它们的界面是平直的,则根据Fe-Fe3C相图可知,奥氏体中的碳浓度是不均匀的。
与Fe3 C相邻界面的碳浓度高于奥氏体与铁素体相邻界面的碳浓度。
因此,碳在奥氏体中的分布出现梯度,并引起碳在奥氏体中不断地从高浓度处向低浓度处扩散,从而破坏了相界面的平衡。
为了恢复平衡Fe3C就不断地溶人奥氏体,以保持它们之间的相界面的碳浓度。
与此同时,在另一侧界面上,由于奥氏体的碳原子向铁素体中不断扩散,致使铁素体不断转变为奥氏体。
这样奥氏体的两个界面就不断地向铁素体和Fe3C方向移动,奥氏体便长大。
在铁素体内,由于它与Fe3C和奥氏体接触的两个界面之间也存在碳浓度差,因此,碳在铁素体内也进行着扩散,结果加速铁素体向奥氏体的转变,使奥氏体长大。
奥氏体不锈钢晶粒度摘要:一、奥氏体不锈钢晶粒度的概念及影响因素二、奥氏体不锈钢晶粒度的控制方法三、奥氏体不锈钢通过热处理细化晶粒的实践正文:一、奥氏体不锈钢晶粒度的概念及影响因素奥氏体不锈钢晶粒度是指在钢中奥氏体晶粒的大小。
晶粒度对不锈钢的性能有着重要影响,如强度、韧性、耐腐蚀性等。
影响奥氏体不锈钢晶粒度的因素主要有:1.钢的化学成分:碳、铬、镍等元素对奥氏体晶粒度有显著影响。
碳质量分数的增加会促使晶粒度变大,而铬和镍的质量分数的增加则有细化晶粒的作用。
2.钢的原始组织:钢的原始组织对奥氏体晶粒度也有影响。
如铁素体、珠光体等原始组织细化,有利于获得细小的奥氏体晶粒。
3.加热温度与保温时间:加热温度越高,晶粒长大速度越快;保温时间越长,晶粒也容易长大。
因此,在保证工件完全热透并获得均匀奥氏体的前提下,应尽量降低加热温度和保温时间。
4.加热速度:加热速度越快,过热度越大,奥氏体形核率大于长大速度,有利于获得细小的起始晶粒。
但保温时间过长,晶粒反而会变得更粗大。
二、奥氏体不锈钢晶粒度的控制方法为使钢在热处理加热时奥氏体晶粒不粗化,可以采取以下措施:1.控制加热温度与保温时间:在保证工件完全热透并获得均匀奥氏体的前提下,尽量降低加热温度和保温时间。
2.控制加热速度:采用快速加热和短时间保温的方法,以获得细小的起始晶粒。
3.控制钢的原始组织:通过调整钢的化学成分和热处理工艺,使钢的原始组织细化,有利于获得细小的奥氏体晶粒。
三、奥氏体不锈钢通过热处理细化晶粒的实践奥氏体不锈钢通过热处理,可以实现晶粒的细化。
具体操作方法如下:1.固溶处理:将合金加热到高温单相区,保持恒温,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理可以细化晶粒,提高钢的性能。
2.退火处理:在奥氏体不锈钢加热到相变点以上某一温度,保温一段时间后,缓慢冷却,以获得均匀的奥氏体组织。
退火处理可以降低晶粒度,提高钢的塑性和韧性。
奥氏体:奥氏体A或合金元素在γ-Fe中的固溶体。
奥氏体晶粒一般为等轴状多边形,在奥氏体晶粒内有孪晶。
奥氏体为面心立方结构,碳原子位于奥氏体晶胞八面体的中心,即面心立方晶胞的中心或棱边的中点。
碳原子在奥氏体中的分布也是不均匀的,存在浓度起伏。
奥氏体的晶格常数随着含碳量的增加而增加,这是碳原子溶入使晶格膨胀的缘故。
当奥氏体中含有合金元素时,大多数合金元素如Mn,Cr,Ni,Co,Si等,在γ-Fe中取代铁原子的位置而形成置换固溶体。
奥氏体的特点:1,A是最密排的点阵结构,致密度高,故A的质量体积最小。
转变成M形式时,体积膨胀2,点阵滑移系多,故A的塑性好,屈服强度低,易于加工变形3,A是高温相,在室温下不稳定,但在钢中加入足够多的扩大γ-Fe相区的化学元素,则可使A稳定在室温4。
A具有顺磁性5,A的导热性差,线膨胀系数最大,故可用来制造热膨胀灵敏的仪表元件。
奥氏体形成过程:奥氏体的形成是扩散性相变。
分为四个阶段,即1,奥氏体形核,2,晶核向铁素体和渗碳体两个方向长大3,剩余碳化物溶解4,奥氏体成分均匀化。
奥氏体晶核是通过扩散机制形成的。
奥氏体的形成速度取决于形核率N和长大速度vg。
温度越高,晶粒越细。
影响A形成速度的因素:一切影响A形核率和增大素的的因素都影响奥氏体的形成速度。
1.,加热温度:(1)奥氏体形成速度随着加热温度升高而迅速增大。
转变孕育期变短,相应的转变终了时间也变短。
(2)随着奥氏体形成温度升高,形核率增大速度高于长大速度的增长速率。
因此奥氏体形成温度愈高,起始晶粒度愈小(3)随着奥氏体形成温度升高,奥氏体相界面向铁素体的推移速度与向渗碳体的推移速度之比增大。
当奥氏体将铁素体全部溶解时,剩下的渗碳体量增多。
2,钢中含碳量和原始组织的影响:(1)钢中含碳量愈高,奥氏体形成速度愈快(2.)钢的原始组织愈细,奥氏体形成速度愈快。
3,合金元素的影响:(1)对扩散系数的影响。
强碳化物形成元素,降低碳在奥氏体中的扩散系数,因而减慢奥氏体的形成速度。