晶粒长大
- 格式:ppt
- 大小:912.00 KB
- 文档页数:42
同质多晶现象名词解析同质多晶现象名词解析同质多晶现象是材料科学研究领域中的一个重要前沿课题,它是指在同种材料的微观结构上存在多种晶体形态的现象。
同质多晶现象的发现,不仅为研究材料的物理、化学特性提供了新的思路和方法,也在工业生产中起到了重要的作用,具有广泛的应用价值。
下面对同质多晶现象相关的一些基本概念进行解析。
1. 晶体结构晶体是由具有特定空间排列顺序的原子、离子或分子排列构成的,在晶体结构中具有很高的局部有序性和长程周期性。
晶体结构又可以分为单晶和多晶两种。
单晶指的是在同一实体内,具有统一性和完整性的晶体,其晶体结构的长程周期性和局部有序性非常高;而多晶指的是由多个晶体微观结构重叠在一起,微观上呈现出多种晶体形态,晶体结构的局部有序性相比于单晶较弱。
2. 同质多晶现象同质多晶现象是指在同种材料的微观结构上存在多种晶体形态,其中的各个晶粒,在由多个晶粒组成的整体显微结构中为同质的晶体。
常见的同质多晶材料有金属、陶瓷、半导体等。
在同质多晶现象中,微观结构的多样性和分布规律对材料的宏观性能具有重要影响,如材料的强度、硬度、塑性、电学性质等。
3. 晶粒晶粒又称为结晶颗粒,是固态材料中最小的具有完整晶体结构的单元,它是由一定数量的原子或基本单元构成的,在结构上具有局部有序性和长程周期性。
晶粒是组成多晶材料的基本单元,其大小、形状、分布规律等特征都是材料宏观性能的重要因素。
4. 晶界晶界是在不同晶粒之间形成的界面,其宽度范围从亚纳米到微米不等。
晶界是材料中局部结构的不连续性区域,具有较弱的局部有序性。
晶界是晶体中一个非常重要的概念,它对材料的物理和力学性质具有很大的影响,如晶界势能、强化效应、位错和缺陷等。
5. 晶粒生长和晶粒长大晶粒生长是指晶体从母体中形成晶核开始,逐渐增长、演变并发展出完整的晶体结构的过程。
晶粒长大是指晶粒在材料变形、固化等过程中,通过吞并相邻晶粒,非晶区的再结晶等过程,在材料中长期演化,最终形成多晶结构。
热处理对合金显微组织的演变规律热处理是一种用于改变合金材料显微组织的热力学过程。
通过控制材料的加热、保温和冷却过程,可以改变合金的晶粒尺寸、相比例和相形态,从而调整材料的性能。
合金的显微组织演变规律是指在热处理过程中,合金的晶粒尺寸、相比例和相形态的变化规律。
热处理对合金显微组织的演变规律可以分为三个阶段:加热阶段、保温阶段和冷却阶段。
在加热阶段,合金材料被加热到一定温度,晶粒开始长大。
晶粒的长大是由于晶界的运动和晶体内部的原子扩散。
晶界的运动是指晶界的位错运动和晶粒边界的迁移,晶界的运动可以促使晶体内部的原子扩散。
原子扩散是指原子在晶体内部的移动,当晶粒被加热到一定温度时,原子会具有足够的热能来克服晶体表面的能垒,从而在晶体内部扩散。
在保温阶段,合金材料保持在一定温度下,晶粒继续长大,晶粒的尺寸逐渐增大。
在冷却阶段,合金材料被快速冷却,晶粒的尺寸被固定下来。
热处理对合金显微组织的演变规律不仅取决于加热温度和保温时间,还与合金的成分和冷却方式有关。
不同的合金在相同的热处理条件下,其显微组织演变规律可能会有所不同。
例如,对于某些合金,加热温度过高或保温时间过长可能会导致晶粒长大过快,从而使材料的力学性能下降。
此外,合金的成分对其显微组织演变规律也有重要影响。
不同的合金成分会导致不同的相形态和相比例,从而影响材料的性能。
冷却方式也是影响合金显微组织演变规律的重要因素。
不同的冷却方式可以导致不同的晶粒尺寸和相形态。
热处理对合金显微组织的演变规律的研究对于合金材料的设计和应用具有重要意义。
通过控制热处理参数,可以调整合金的显微组织,从而改变材料的性能。
例如,通过细化晶粒尺寸可以提高合金的强度和硬度,提高材料的耐磨性和耐腐蚀性;通过调整相比例和相形态可以改善合金的韧性和塑性,提高材料的冲击韧性和延展性。
因此,热处理对于合金材料的制备和加工具有重要意义。
热处理是一种用于改变合金材料显微组织的热力学过程。
热处理对合金显微组织的演变规律可以分为加热阶段、保温阶段和冷却阶段。
针对常州永青铸件晶粒粗大,中挖研究院与华强研究院一直在进行研究分析,主要原因有以下几方面造成:1)化学成份不合理;2)浇注系统设计不合理;3)热处理工艺不不合理;针对不同原因,我们主要做了如下工作;1)调整化学成份,严格控制化学成份,提高合金元素Ni含量(含量由0.2调整至0.4以上),改善晶粒大小,提高铸件冲击韧性;已于常州永青与12年4月批量实施;2)改善浇注系统,局部增加冷铁,改善冷却速度,以细化晶粒;已于常州永青与12年4月批量实施;4)改善热处理方式,延长保温时间和改善冷却方式以细化晶粒;已于常州永青与12年5月批量实施;5)改善热处理方式,热处理工艺有正火调整至正火加调质,使晶粒更细化;湖州运河从产品试制一致采用;6)7)在铸钢的熔化和脱氧操作中,加入合金元素的元素,因此和锻钢相比,铸钢不太容易形成品粒粗大。
因成分而引起品粒粗大的铸钢件,可通过退火或正火处理得到细化。
是指经过机械工或进行断口检验时,显示出晶粒组织过分粗大而不适合应用的缺陷,这种晶粒粗大的组织,可能是遍布于铸件整体,也可能发生于铸件的局部。
从本质上讲,晶粒粗大缺陷是一种冶金缺陷。
笔者根据多年的生产实践并参阅有关资料,谈谈铸件晶粒粗大缺陷产生的原因及防止措施。
1.铸件结构和工艺设计(1)铸件截面差异过,会因为较厚的截面冷却缓慢而造成该处晶粒粗大。
灰铸铁等对截面变化十分敏感的金属,更容易产生此类缺陷。
防止产生这类缺陷的有效方法是避免铸件截面尺寸过分悬殊,但这种途径有时是铸造工作者所无能为力的。
因而就铸造本身言,可通过采取设置冷铁、控制浇注温度或通过选择合适的浇汁系统来减少这类问题的发生,降低这类缺陷的严重程度。
采用冷铁可加快铸件较厚截面的冷却速度;浇注温度过高,会使这类问题更为严重,应予以避免;通过调节、修正浇注系统设计,使温度低的金属熔液位于铸件截面较厚的部位,并在铸件的厚截面处设计最有效的冒口,以尽可能减小冒口的尺寸。
金属材料的工艺热处理对晶粒尺寸的影响导语:金属材料的晶粒尺寸是决定其力学性能和织构的重要因素之一。
而工艺热处理是一种重要的方式,可以对金属材料的晶粒尺寸进行调控。
本文将探讨金属材料的工艺热处理对晶粒尺寸的影响及相关机制。
一、工艺热处理的概述工艺热处理是指在金属材料加工过程中通过对材料进行加热、保温和冷却等一系列控制温度的操作,以调整、改变材料的结构和性能。
通常包括退火、淬火、时效等处理方式。
这些热处理过程中,晶粒尺寸是一个十分关键的参数。
二、退火对晶粒尺寸的影响1. 晶粒长大:退火时,晶粒内部存在位错和缺陷,晶界区域能量较高。
而在退火过程中,材料中的原子在高温下能够较为自由地重新排列和扩散,使得晶界区域的位错消失和晶粒的长大。
因此,晶粒尺寸会随着退火时间的增长而增大。
2. 晶粒形状改变:在退火过程中,材料中的晶粒可能会发生形状改变。
在某些情况下,晶粒会发生成簇,形成更大的晶粒;而在其他情况下,晶粒会趋于细小且均匀。
这取决于材料的化学成分、退火温度和退火时间等因素。
三、淬火对晶粒尺寸的影响1. 晶粒细化:淬火是指将加热至相变温度以上的金属迅速冷却至室温的过程。
在淬火中,金属材料的晶粒由于冷却速度较快,无法在短时间内长大。
淬火后晶粒尺寸通常会变得较小,且分布均匀。
这种晶粒细化不仅可以提高材料的强度和硬度,还有助于改善材料的韧性和耐疲劳性能。
2. 产生非均匀的晶粒尺寸:尽管淬火可以使晶粒细化,但在一些情况下也可能导致晶粒尺寸的非均匀分布。
这可能是由于冷却速率不均匀,或材料中的晶界有缺陷等原因。
四、时效对晶粒尺寸的影响时效是指在淬火过程后对材料进行长期低温保持。
时效主要用于改善材料的强韧性能。
然而,与退火和淬火相比,时效对晶粒尺寸的影响相对较小。
通常情况下,时效会引起晶界与晶界之间的界面能量下降,从而抑制晶界移动和晶粒长大。
结语:通过工艺热处理可以有效地控制金属材料的晶粒尺寸,从而实现对材料性能的调控。
晶粒尺寸、形核率和线长大速度是固态相变和晶体生长过程中的重要参数。
它们之间存在一定的关系和相互影响,具体可通过以下理论进行解释:
1. 晶粒尺寸与形核率:
- 形核率是指单位时间内单位体积内形成的新晶体数量,通常用单位体积内的晶核数量来表示。
形核率的增大通常会导致晶粒尺寸的减小,即形核率与晶粒尺寸呈反比关系。
- 这是因为在具有高形核率的情况下,晶体相变或生长过程中会形成更多的晶核,从而导致晶体的竞争生长,晶粒尺寸相对较小。
2. 晶粒尺寸与线长大速度:
- 线长大速度是指晶体生长界面的线长度在单位时间内的增长量。
晶粒尺寸的增大往往伴随着晶体生长速度的增加,即晶粒尺寸与线长大速度正相关。
- 当晶体生长界面具有较高的线长大速度时,晶体生长更快,晶粒尺寸也相应增大。
需要注意的是,晶粒尺寸、形核率和线长大速度的具体关系还受到其他因素的影响,比如温度、溶质浓度、晶体生长方向等。
此外,材料的特性、工艺条件等也会对这些参数之间的关系产生影响。
因此,在具体的实验或工程应用中,需要综合考虑多个因素,才能更准确地描述晶粒尺寸、形核率和线长大速度之间的关系。
§ 4晶粒长大晶粒长大的驱动力是晶界能的下降,即长大前后的界面能差值。
一、晶粒的正常长大1.定义:指晶体中有许多晶粒获得长大条件,晶粒的长大是连续地,均匀地进行,晶粒长大过程中晶粒的尺寸是比较均匀的,晶粒平均尺寸的增大也是连续的。
2.晶粒长大的方式(1)弯曲的晶界总是趋向于平直化,即向曲率中心移动以减少界面积,同时,大角度晶界的迁移率总是大于小角度晶界的迁移率。
当晶界为三维空间的任意曲面时,作用在单位界面上的力P:晶界迁移的驱动力疗:晶界单位面积的界面能R1、R2:曲面的两个主曲率半径如果空间曲面为球面时,R1=R2,即:晶界迁移的驱动力与其曲率半径P为:R成反比,与界面能成正比。
(2)晶界总是向角度较锐的晶粒方向移动, 力图使三个夹角都等于120度。
® A闘爲鼻商世率中心若向于平J化在三维坐标中,晶粒长大最后稳定的形状是正十四面体。
3 .影响晶粒长大(即晶界迁移率)的因素(1)温度 温度越高,晶粒长大速度越快,晶粒越粗大RT}G:晶界迁移速度G0:常数QG 晶界迁移的激活能(2) 第二相晶粒长大的极限半径K :常数 r :第二相质点半径 f :第二相的体积分数当界面张力平衡时: 因为大角度晶界 在二维坐标中,晶界边数少于数大于6的晶粒,晶界 向内凹进,逐渐长大,当晶粒的边数为TA=TB=TC 而 A+B+C=360度 /• A=B=C=120度6的晶粒,其晶界向外凸出,必然逐渐缩小,甚至消失,而边6时,处于稳定状态。
1■兀■兀Sin B sm C7,• •第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能力越强。
设第二相颗粒为球形,对晶界的阻力为 F ,与驱动力平衡F = Z TT cos(^-<7-cospO°-/J)6C0妙—妙 (1) a 角只取决于第二相颗粒与晶粒间的表面张力,可看作恒定值,现将( 竺0令却 ,可得: 盂+ (2)F 住=叫TP (1 + COE 氐) (3) 设单位体积中有NV 个质点,其体积分数为f4=一曲3 (5)的正方体,所有中心位于这个 1 X 1 X 2r 体积内半径为r 的第二相颗分晶界交截,单位面积晶界将与1 X 1X 2r X NV 个晶粒交截。