高中物理各种力做功求解复习
- 格式:ppt
- 大小:458.50 KB
- 文档页数:27
查补易混易错点09动能定理1.巧记知识一、易错易混知识大全【知识点一】功的分析与计算1.计算功的方法(1)对于恒力做功利用W=Fl cosα;(2)对于变力做功可利用动能定理(W=ΔEk);(3)对于机车启动问题中的定功率启动问题,牵引力的功可以利用W=Pt.2.合力功计算方法(1)先求合外力F合,再用W合=F合l cosα求功.(2)先求各个力做的功W1、W2、W3、⋯,再应用W合=W1+W2+W3+⋯求合外力做的功.3.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点:①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能,内能Q=Ffx相对.【知识点二】功率的分析与计算1.平均功率的计算方法(1)利用P=W t.(2)利用P=Fv cosα,其中v为物体运动的平均速度.2.瞬时功率的计算方法(1)P=Fv cosα,其中v为t时刻的瞬时速度.(2)P=FvF,其中vF为物体的速度v在力F方向上的分速度.(3)P =Fvv ,其中Fv 为物体受到的外力F 在速度v 方向上的分力.【知识点三】动能定理的理解1.动能定理表明了“三个关系”(1)数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合力做的功。
(2)因果关系:合力做功是引起物体动能变化的原因。
(3)量纲关系:单位相同,国际单位都是焦耳。
2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。
当然动能定理也就不存在分量的表达式。
【知识点四】动能定理的应用1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.2.应用动能定理解题的基本思路二、真题演练1(2022·福建·高考真题)(多选)一物块以初速度v 0自固定斜面底端沿斜面向上运动,一段时间后回到斜面底端。
高中物理功和能公式整理高中物理功和能公式整理1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh216.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP学好高中物理的技巧(1)做好课前预习。
高中物理知识点总结电场力做正功,电势能减小,电场力做负功,电势能增大,正电荷在电场中受力方向与场强方向一致,所以正电荷沿场强方向,电势能减小,负电荷在电场中受力方向与场强相反,所以负电荷沿场强方向,电势能增大,但电势都是沿场强方向减小。
1、原因电势能,电场力,功的关系与重力势能,重力,功的关系很相似。
E=mgh,重力做正功,重力势能减小。
电势能的原因就是电场力有做功的能力,凡是势能规律几乎都是如此,电场力正做功,电势能减小,电场力负做功,电势能增大,在做正功的过程中,电势能通过做功的形式把能量转化为其他形式的能,因而电势能减小。
静电力做的正功功=电势能的减小量,静电力做的负功=电势能的增加量(1)看电场力与带电粒子的位移方向夹角,小于____度为正功,大于____度为负功;(2)看电场力与带电粒子的速度方向夹角,小于____度为正功,大于____度为负功;(3)看电势能的变化,电势能增加,电场力做负功,电势能减小,电场力做正功。
怎么学习高中物理要想学好物理,第一条就要好好学习,就是要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习。
____把“陌生”变成“透彻”!遇到陌生的概念,比如“势能”“电势”“电势差”等等先不要排斥,要先去真心接纳它,再通过听老师讲解、对比、应用理解它。
要有一种“不破楼兰誓不还”的决心和“打破沙锅问到底”的研究精神。
这样时间长了,应用多了,陌生的就变成了透彻的了。
3.要注意学习上的八个环节4.处理好听课和记笔记的关系有的同学从来就没有记笔记的习惯,这是不好的,特别是对于高中物理学习中是不行的。
俗话说“好脑子不如烂笔头”,听课时间有限,老师讲的内容转瞬即逝,我们对知识的记忆随时间延伸会逐渐遗忘,没有笔记我们以后就没有办法进行复习。
高中物理复习技巧1.模型归类做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型进行分类,用一套方法解一类题目。
例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力提供了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。
第27课时功和功率(双基落实课)[命题者说] 功和功率是高中物理的根本概念。
高考常考查功和功率的计算。
复习本课时应注意掌握功的几种计算方法、平均功率和瞬时功率的分析、机车启动问题等。
一、功的理解和正负判断1.做功的两个要素:力和物体在力的方向上发生的位移。
2.公式:W=Flcosα(1)α是力与位移方向之间的夹角,l是物体对地的位移。
该公式只适用于恒力做功。
3.功的正负(曲线运动中α是力与速度方向之间的夹角)夹角功的正负α<90°力对物体做正功α=90°力对物体不做功α>90°力对物体做负功或说成物体克服这个力做了功[小题练通]1.判断正误只要物体受力且发生位移,那么力对物体一定做功。
(×)(2)如果一个力阻碍了物体的运动,那么这个力一定对物体做负功。
(√)摩擦力可能对物体做正功、负功,也可能不做功。
(√)作用力做正功时,反作用力一定做负功。
(×)力对物体做功的正负是由力和位移间的夹角大小决定的。
(√)力始终垂直物体的运动方向,那么该力对物体不做功。
(√)(7)摩擦力对物体一定做负功。
(×)2.如下列图,拖着旧橡胶轮胎跑步是身体耐力训练的一种有效方法。
如果某受训者拖着轮胎在水平直道上跑了100m,那么以下说法正确的选项是()A.轮胎受到地面的摩擦力对轮胎做负功B.轮胎受到的重力对轮胎做正功C.轮胎受到的拉力对轮胎不做功D.轮胎受到的地面的支持力对轮胎做正功解析:选A根据力做功的条件,轮胎受到的重力和地面的支持力都与位移垂直,这两个力均不做功,选项B、D错误;轮胎受到地面的摩擦力与位移反向,做负功,A项正确;轮胎受到的拉力与位移夹角小于90°,做正功,C项错误。
3.如下列图,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的摩擦因数μ,在外力作用下,斜面以加速度a沿水平方向向左做匀加速运,体m与斜面体相静止。
关于斜面m的支持力和摩擦力的以下法中的是A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做功解析:B支持力方向垂直斜面向上,故支持力一定做正功。
高考物理复习资料汇编资料目录高考物理知识及解题模型概要警记:固步自封是进步的最大障碍,欢迎同行交流教学学好物理要记住:最基本的知识、方法才是最重要的;学好物理重在理解概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件 最基础的概念、公式、定理、定律 最重要 每一题弄清楚对象、条件、状态、过程是解题关健力的种类:13个性质力 说明:凡矢量式中用“+”号都为合成符号 “受力分析的基础”重力: G = mg 弹力:F= Kx 滑动摩擦力:F滑= N静摩擦力: O f 静f m浮力: F浮= gV 排压力: F= PS = ghs万有引力: F引=G221r m m 电场力: F 电=q E =q d u库仑力: F=K 221r q q 真空中、点电荷磁场力:1、安培力:磁场对电流的作用力; 公式: F= BIL BI 方向:左手定则2、洛仑兹力:磁场对运动电荷的作用力;公式: f=BqV BV 方向:左手定则分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快;核力:只有相邻的核子之间才有核力,是一种短程强力;运动分类:各种运动产生的力学和运动学条件、及运动规律重点难点高考中常出现多种运动形式的组合 匀速直线运动 F合=0 V 0≠0 静止匀变速直线运动:初速为零,初速不为零,匀变速直曲线运动决于F 合与V 0的方向关系 但 F 合= 恒力只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 圆周运动:竖直平面内的圆周运动最低点和最高点; 匀速圆周运动是什么力提供作向心力简谐运动;单摆运动; 波动及共振;分子热运动; 类平抛运动;带电粒子在f 洛作用下的匀速圆周运动物理解题的依据:力的公式 各物理量的定义 各种运动规律的公式 物理中的定理定律及数学几何关系θCOS F F F F 2122212F ++= F 1-F 2 F ∣F 1 +F 2∣、三力平衡:F 3=F 1 +F 2非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形 多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向匀变速直线运动:基本规律: V t = V 0 + a t S = v o t +12a t 2几个重要推论: 1 推论:V t2-V 02 = 2as 匀加速直线运动:a 为正值 匀减速直线运动:a 为正值2 A B 段中间时刻的即时速度:3 AB 段位移中点的即时速度:V t/ 2 =V =V V t 02+=s t =T S S NN 21++= V N V s/2 = v v o t 222+4 S 第t 秒 = S t -S t-1= v o t +12 a t 2 -v o t -1 +12 a t -12= V 0 + a t -125 初速为零的匀加速直线运动规律①在1s 末 、2s 末、3s 末……ns 末的速度比为1:2:3……n ; ②在1s 、2s 、3s ……ns 内的位移之比为12:22:32……n 2;③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……2n-1; ④从静止开始通过连续相等位移所用时间之比为1:()21-:32-)……n n --1)⑤通过连续相等位移末速度比为1:2:3……n6 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.7 通过打点计时器在纸带上打点或照像法记录在底片上来研究物体的运动规律初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数;匀变速直线运动的物体 中时刻的即时速度等于这段的平均速度⑴是判断物体是否作匀变速直线运动的方法;s = aT 2⑵求的方法 V N =V =s t =T S S NN 21++ 2Ts s t s 2v v v v n 1n t 0t/2+==+==+平⑶求a 方法 ① s = a T2②3+N S 一N S =3 a T 2 ③ S m 一S n = m-n a T 2 m.>n④画出图线根据各计数点的速度,图线的斜率等于a ; 识图方法:一轴、二线、三斜率、四面积、五截距、六交点研究匀变速直线运动实验:右图为打点计时器打下的纸带;选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …;测出相邻计数点间的距离s 1、s 2、s 3 … 利用打下的纸带可以: ⑴求任一计数点对应的即时速度v :如Tss v c 232+=其中T =5×=⑵利用“逐差法”求a :()()23216549T s s s s s s a ++-++=⑶利用上图中任意相邻的两段位移求a :如223Ts s a -=⑷利用v -t 图象求a :求出A 、B 、C 、D 、E 、F 各点的即时速度,画出v-t 图线,图线的斜率就是加速度a ; 注意:a 纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离;b 时间间隔与选计数点的方式有关50Hz,打点周期,常以打点的5个间隔作为一个记时单位c 注意单位,打点计时器打的点和人为选取的计数点的区别竖直上抛运动:速度和时间的对称上升过程匀减速直线运动,下落过程匀加速直线运动.全过程是初速度为V 0加速度为g 的匀减速直线运动;1上升最大高度:H = V g o 22 2上升的时间:t= V g o 3从抛出到落回原位置的时间:t = 2Vgo4上升、下落经过同一位置时的加速度相同,而速度等值反向t/s5上升、下落经过同一段位移的时间相等; 6 适用全过程S = V o t -12g t 2 ; V t = V o -g t ; V t 2-V o 2= -2gS S 、V t的正、负号的理解 几个典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动牛二:F合= m a 理解:1矢量性 2瞬时性 3独立性 4同体性 5同系性 6同单位制万有引力及应用:与牛二及运动学公式1思路:卫星或天体的运动看成匀速圆周运动, F心=F 万 类似原子模型2方法:F 引=G 2rMm = F 心= m a 心= m ωm R v =2 2 R= m 422πT R =m42πn 2R 地面附近:G2RMm = mg ⇒GM=gR 2黄金代换式 轨道上正常转:G 2rMm= m R v 2 ⇒ rGMv =讨论v 或E K与r 关系,r 最小时为地球半径,v 第一宇宙=s 最大的运行速度、最小的发射速度;T 最小==G 2r Mm =m 2ωr = m r T 224π ⇒ M=2324GT r π ⇒ T 2=2324gR r π⇒ 2T 3G πρ=M=ρV 球=ρπ34r 3 s 球面=4πr 2 s=πr 2光的垂直有效面接收,球体推进辐射 s 球冠=2πRh3理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v第一宇宙=s 最小的发射速度;T 最小==4同步卫星几个一定:三颗可实现全球通讯南北极有盲区轨道为赤道平面 T=24h=86400s 离地高h=x104km 为地球半径的倍 V=s ﹤V 第一宇宙=s =15o/h 地理上时区 a =s 25运行速度与发射速度的区别 6卫星的能量:r 增⇒v 减小E K 减小<E p 增加,所以 E 总增加;需克服引力做功越多,地面上需要的发射速度越大应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径x103km 表面重力加速度g= m/s 2月球公转周期30天典型物理模型:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组;解决这类问题的基本方法是整体法和隔离法;整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体考虑分受力情况,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用如求相互间的压力或相互间的摩擦力等时,把某物体从连接体中隔离出来进行分析的方法;两木块的相互作用力N=212112m m F m F m ++讨论:①F 1≠0;F 2=0N=F m m m 212+ 与运动方向和接触面是否光滑无关保持相对静止② F 1≠0;F 2=0 N=212112m m F m F m ++F=211221m m g)(m m g)(m m ++F 1>F 2 m 1>m 2 N 1<N 2为什么N 5对6=F Mmm 为第6个以后的质量 第12对13的作用力 N 12对13=F nm12)m-(n水流星模型竖直平面内的圆周运动竖直平面内的圆周运动是典型的变速圆周运动研究物体通过最高点和最低点的情况,并且经常出现临界状态;圆周运动实例①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力;④物体在水平面内的圆周运动汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转和物体在竖直平面内的圆周运动翻滚过山车、水流星、杂技节目中的飞车走壁等;⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、关健要搞清楚向心力怎样提供的1火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R;由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力;①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=mv 2/R ③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=mv 2/R 即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道;2无支承的小球,在竖直平面内作圆周运动过最高点情况:①临界条件:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力为向心力,恰能通过最高点;即mg=mv 临2/R结论:绳子和轨道对小球没有力的作用可理解为恰好转过或恰好转不过的速度,只有重力作向心力,临界速度V 临=gR②能过最高点条件:V ≥V 临当V ≥V 临时,绳、轨道对球分别产生拉力、压力 ③不能过最高点条件:V<V 临实际上球还未到最高点就脱离了轨道 最高点状态: mg+T 1=mv 高2/L 临界条件T 1=0, 临界速度V临=gR , V ≥V 临才能通过最低点状态: T 2- mg = mv 低2/L 高到低过程机械能守恒: 1/2mv 低2= 1/2mv 高2+ mghT 2- T 1=6mg g 可看为等效加速度半圆:mgR=1/2mv2T-mg=mv 2/R ⇒ T=3mg3有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg 可理解为小球恰好转过或恰好转不过最高点恰好过最高点时,此时从高到低过程 mg2R=1/2mv 2低点:T-mg=mv 2/R ⇒ T=5mg注意物理圆与几何圆的最高点、最低点的区别以上规律适用于物理圆,不过最高点,最低点, g 都应看成等效的2.解决匀速圆周运动问题的一般方法1明确研究对象,必要时将它从转动系统中隔离出来; 2找出物体圆周运动的轨道平面,从中找出圆心和半径; 3分析物体受力情况,千万别臆想出一个向心力来;4建立直角坐标系以指向圆心方向为x 轴正方向将力正交分解; 5⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v mF )(建立方程组πω 3.离心运动在向心力公式F n =mv2/R 中,F n是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力;当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动;其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心;斜面模型斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面μ< tg θ物体沿斜面加速下滑a=gsin θ一μcos θ 搞清物体对斜面压力为零的临界条件超重失重模型 系统的重心在竖直方向上有向上或向下的加速度或此方向的分量a y向上超重加速向上或减速向下;向下失重加速向下或减速上升 难点:一个物体的运动导致系统重心的运动1到2到3过程中 绳剪断后台称示数 13除外超重状态 系统重心向下加速 斜面对地面的压力 铁木球的运动地面对斜面摩擦力 用同体积的水去补充 导致系统重心如何运动轻绳、杆模型绳只能承受拉力,杆能承受沿杆方向的拉、压、横向及任意方向的力杆对球的作用力由运动情况决定只有θ=arctga/g 时才沿杆方向 最高点时杆对球的作用力最低点时的速度,杆的拉力换为绳时:先自由落体,在绳瞬间拉紧沿绳方向的速度消失有能量损失,再下摆机械能守恒假设单B 下摆,最低点的速度V B =R 2g ⇐mgR=221Bmv 整体下摆2mgR=mg 2R +'2B '2A mv 21mv 21+'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B=R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功若 V 0<gR ,运动情况为先平抛,绳拉直沿方向的速度消失即是有能量损失,绳拉紧后沿圆周下落;不能够整个过程用机械能守恒; 求水平初速及最低点时绳的拉力动量守恒:内容、守恒条件、不同的表达式及含义:列式形式:'p p=;0p =∆;21p -p ∆=∆实际中的应用:m 1v 1+m 2v 2='22'11v m v m +;0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=m 1+m 2v 共注意理解四性:系统性、矢量性、同时性、相对性解题步骤:选对象,划过程;受力分析;所选对象和过程符合什么规律用何种形式列方程;有时先要规定正方向求解并讨论结果; 碰撞模型:特点和注意点:①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度;m 1v 1+m 2v 2='22'11v m v m + 1 'K 2'K 1K 2k 12121E m 2E m 2E m 2E m 2+=+ '222'12221mv 21mv 21mv 21mv 21+=+ 2 2221212m P 2m P +=2'221'212m P 2m P +'1v =2112122m m )v m -(m v m 2++ '2v =2121211m m )v m -(m v m 2++一动一静的弹性正碰:即m 2v 2=0 ;222v m 21=0 代入1、2式 '1v =21121m m )v m -(m +主动球速度下限 '2v =2111m m v m 2+被碰球速度上限若m 1=m 2,则,交换速度; m 1>>m 2,则 ;m 1<<m 2,则一动一静:若v 2=0, m 1=m 2时, ; m 1>>m 2时, ;m 1<<m 2时, ;一动静的完全非弹性碰撞子弹打击木块模型重点 mv 0+0=m+M 'v 'v =Mm mv 0+主动球速度上限,被碰球速度下限 20mv 21='2M)v m (21++E 损 E 损=20mv 21一'2M)v (m 21+=M)2(m mMv 20+ 由上可讨论主动球、被碰球的速度取值范围21121m m )v m -(m +<v 主<M m mv 0+ Mm mv 0+<v 被<2111m m v m 2+讨论:①E 损 可用于克服相对运动时的摩擦力做功转化为内能E 损=fd 相=μmg ·d 相=20mv 21一'2M)v (m 21+=M)2(m mMv 2+⇒ d相=M)f2(m mMv 20+=M)g(m 2mMv 20+μ②也可转化为弹性势能; ③转化为电势能、电能发热等等人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒mv=MV ms=MS s+S=d ⇒s=d Mm M+ M m L L m M =机械振动、机械波:基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全振动过程中各物理量的变化规律; 单摆:等效摆长、等效的重力加速度 影响重力加速度有:①纬度,离地面高度②在不同星球上不同,与万有引力圆周运动规律或其它运动规律结合考查 ③系统的状态超、失重情况④所处的物理环境有关,有电磁场时的情况⑤静止于平衡位置时等于摆线张力与球质量的比值 注意等效单摆即是受力环境与单摆的情况相同 T=2πgL⇒g=22T L 4π 应用:T 1=2πgL OT 2=2πg L -L O ∆ ⇒22212T -T L4g ∆=π沿光滑弦cda 下滑时间t 1=t oa =gR2g R 2=沿ced 圆弧下滑t 2或弧中点下滑t 3: t 2=t 3=4T =g R 42π=gR 2π共振的现象、条件、防止和应用机械波:基本概念,形成条件、特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移;①各质点都作受迫振动,②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离②一个周期内波传播的距离 ③两相邻的波峰或谷间的距离④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长 波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现, 图象特点和意义 联系:波的传播方向⇔质点的振动方向同侧法、带动法、上下波法、平移法知波速和波形画经过∆t 后的波形特殊点画法和去整留零法波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件热学 分子动理论:①物质由大量分子组成,直径数量级10-10m 埃A 10-9m 纳米nm ,单分子油膜法②永不停息做无规则的热运动,扩散、布朗运动是固体小颗粒的无规则运动它能反映出液体分子的运动③分子间存在相互作用力,注意:引力和斥力同时存在,都随距离的增大而减小,但斥力变化得快;分子力是指引力和斥力的合力;热点:由r 的变化讨论分子力、分子动能、分子势能的变化物体的内能:决定于物质的量、t 、v 注意:对于理想气体,认为没有势能,其内能只与温度有关,一切物体都有内能由微观分子动能和势能决定而机械能由宏观运动快慢和位置决定有惯性、固有频率、都能辐射红外线、都能对光发生衍射现象、对金属都具有极限频率、对任何运动物体都有波长与之对应德布罗意波长内能的改变方式:做功转化外对其做功E 增;热传递转移吸收热量E 增;注意符合法则 热量只能自发地从高温物体传到低温物体,低到高也可以,但要引起其它变化热的第二定律热力学第一定律ΔE =W+Q ⇔能的转化守恒定律⇔第一类永动机不可能制成. 热学第二定律⇔第二类永动机不能制成实质:涉及热现象自然界中的宏观过程都具方向性,是不可逆的①热传递方向表述: 不可能使热量由低温物体传递到高温物体,而不引起其它变化热传导具有方向性②机械能与内能转化表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化机械能与内能转化具有方向性;知第一、第二类永动机是怎样的机器热力学第三定律:热力学零度不可达到一定质量的理想气体状态方程:T PV=恒量 常与ΔE =W+Q 结合考查动量、功和能 重点是定理、定律的列式形式力的瞬时性F=ma 、时间积累I=Ft 、空间积累w=Fs力学:p=mv=KmE 2动量定理 I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律的守恒条件和列式形式:'p p =;0p =∆;21p -p ∆=∆E K =m 2p mv 2122= 求功的方法:力学:① W =Fscos α② W= P ·t ⇒p=t w =t FS=Fv③动能定理 W 合=W 1+ W 2+ --- +W n =ΔE K =E 末-E 初 W 可以不同的性质力做功 ④功是能量转化的量度易忽视 惯穿整个高中物理的主线重力功重力势能的变化 电场力功 分子力功 合外力的功动能的变化电学: W AB =qU AB =F 电d E =qEd E ⇒ 动能导致电势能改变 W =QU =UIt =I 2Rt =U 2t/R Q =I 2RtE=IR+r=u 外+u 内=u 外+Ir P 电源=uIt= +E 其它 P 电源=IE=I U +I 2Rt安培力功W =F 安d =BILd ⇒内能发热R V L B L R BLV B 22== 单个光子能量E =hf一束光能量E 总=NhfN 为光子数目 光电效应mV m 2/2=hf -W 0跃迁规律:h γ =E 末-E 初 辐射或吸收光子 ΔE =Δmc 2 注意换算单位:J ev=×10-19J 度=kw/h=×106J 1u=与势能相关的力做功特点:如重力,弹力,分子力,电场力它们 做功与路径无关,只与始末位置有关.机械能守恒条件:功角度只有重力,弹力做功;能角度只发生重力势能,弹性势能,动能的相互转化 机械能守恒定律列式形式:E 1=E 2先要确定零势面 P 减或增=E 增或减 E A 减或增=E B 增或减除重力和弹簧弹力做功外,其它力做功改变机械能滑动摩擦力和空气阻力做功W =fd 路程⇒E内能发热特别要注意各种能量间的相互转化物理的一般解题步骤:1审题:明确己知和侍求如:光滑,匀速,恰好,缓慢,距离最大或最小,有共同速度,弹性势能最大或最小等等 2选对象和划过程整体还是隔离,全过程还是分过程3选坐标,规定正方向.依据所选的对象在某种状态或划定的过程中有时可能要用到几何关系式. 5,最后结果是矢量要说明其方向.静电场:概念、规律特别多,注意理解及各规律的适用条件;电荷守恒定律,库仑定律三个自由点电荷的平衡问题:“三点共线,两同夹异,两大夹小”: 中间电荷量较小且靠近两边中电量较小的;313221q q q q q q =+只要有电荷存在周围就存在电场力的特性:电场中某位置场强:q F E =2rQ E = d U E = 某点电势ϕ描述电场能的特性:qW 0A →=ϕ相对零势点而言理解电场线概念、特点;常见电场的电场线分布要求熟记,特别是等量同种、异种电荷连线上及中垂线上的场强特点和规律能判断:电场力的方向⇒电场力做功⇒电势能的变化这些问题是基础两点间的电势差U 、U AB :有无下标的区别静电力做功U 是电能⇒其它形式的能 电动势E 是其它形式的能⇒电能Ed -qW U B A BA AB ===→ϕϕ与零势点选取无关 电场力功W=qu=qEd=F 电S E 与路径无关等势面线的特点,处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表面距导体远近不同的等势面的特点,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;表面曲率大的地方等势面越密,E 越大,称为尖端放电静电感应,静电屏蔽电容器的两种情况分析始终与电源相连U 不变;当d 增⇒C 减⇒Q=CU 减⇒E=U/d 减 仅变s 时,E 不变; 充电后断电源q 不变:当d 增⇒c 减⇒u=q/c 增⇒E=u/d=s kq 4d q/c επ=不变sq面电荷密度仅变d 时,E 不变;带电粒子在电场中的运动: ① 加速 2mv 21qEd qu W ===加 m2qu v 加=②偏转类平抛平行E 方向:L=v o t竖直:2222222mv L qU 4dU LU t md qU 21t m qE 21t 21y 偏加偏偏=====a tg θ=加偏2dU L U V atV V 00==⊥速度:V x =V 0 V y =at o oy v gt v v tg ==β β为速度与水平方向夹角位移:S x = V 0 t S y =221atoo 221v 2gt tv gt tg ==α α为位移与水平方向的夹角③圆周运动④在周期性变化电场作用下的运动结论:①不论带电粒子的m 、q 如何,在同一电场中由静止加速后,再进入同一偏转电场,它们飞出时的侧移和偏转角是相同的即它们的运动轨迹相同②出场速度的反向延长线跟入射速度相交于O 点,粒子好象从中心点射出一样 即2Ltan y b==α 证:oo yv gtv v tg ==β oo 2v 2gtt v gt tg 21==α αβ2tg tg =αβ的含义恒定电流: I=t q 定义 I=nesv 微观 I=R u R=Iu 定义 R=S Lρ决定 W =QU =UIt =I 2Rt =U 2t/R Q =I 2Rt P =W/t =UI =U 2/R =I 2RE=IR+r=u 外+u 内=u 外+Ir P 电源=uIt= +E 其它 P 电源=IE=I U +I 2Rt单位:J ev=×10-19J 度=kw/h=×106J 1u=电路中串并联的特点和规律应相当熟悉路端电压随电流的变化图线中注意坐标原点是否都从零开始电路动态变化分析高考的热点各灯表的变化情况1程序法:局部变化⇒R 总⇒I 总⇒先讨论电路中不变部分如:r ⇒最后讨论变化部分局部变化↑↓⇒↓⇒↑⇒↑⇒露内总总U U I R R i ⇒再讨论其它2直观法:①任一个R 增必引起通过该电阻的电流减小,其两端电压U R 增加.本身电流、电压②任一个R 增必引起与之并联支路电流I 并增加; 与之串联支路电压U 串减小称串反并同法 当R=r 时,电源输出功率最大为P max =E 2/4r 而效率只有50%,电学实验专题测电动势和内阻1直接法:外电路断开时,用电压表测得的电压U 为电动势E U=E 2通用方法:AV 法测要考虑表本身的电阻,有内外接法;①单一组数据计算,误差较大②应该测出多组u,I 值,最后算出平均值③作图法处理数据,u,I 值列表,在u--I 图中描点,最后由u--I 图线求出较精确的E 和r;3特殊方法一即计算法:画出各种电路图r)(R I E r)(R I E 2211+=+==E 122121I -I )R -(R I I =r 122211I -I R I -R I 一个电流表和两个定值电阻r I u E r I u E 2211+=+==E 211221I -I u I -u I =r 2112I -I u -u 一个电流表及一个电压表和一个滑动变阻器r R u u E r R u u E 222111+=+=21122121R u -R u )R -(R u u E =21122121R u -R u R)R u -(u r =一个电压表和两个定值电阻二测电源电动势ε和内阻r 有甲、乙两种接法,如图甲法中所测得ε和r 都比真实值小,ε/r 测=ε测/r 真; 乙法中,ε测=ε真,且r 测= r+r A ;三电源电动势ε也可用两阻值不同的电压表A 、B 测定,单独使用A 表时,读数是U A ,单独使用B 表时,读数是U B ,用A 、B 两表测量时,读数是U, 则ε=U A U B /U A -U;电阻的测量AV 法测:要考虑表本身的电阻,有内外接法;多组u,I 值,列表由u--I 图线求;怎样用作图法处理数据 欧姆表测:测量原理两表笔短接后,调节R o 使电表指针满偏,得 I g =E/r+R g +R o接入被测电阻R x 后通过电表的电流为 I x =E/r+R g +R o +R x =E/R 中+R x 由于I x 与R x 对应,因此可指示被测电阻大小使用方法:机械调零、选择量程大到小、欧姆调零、测量读数时注意挡位即倍率、拨off 挡; 注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零; 电桥法测半偏法测表电阻 断s,调R 0使表满偏; 闭s,调R ’使表半偏.则R 表=R ’一、测量电路 内、外接法 记忆决调 “内”字里面有一个“大”字类型 电路图 R 测与R 真比较 条件计算比较法己知R v 、R A 及R x 大致值时内R 测=I U U AR +=R X +R A > R X 适于测大电阻R x >v A R R当R v 、R A 及R x 末知时,采用实验判断法:动端与a 接时I 1;u 1 ,I 有较大变化即121121I I -I u u -u <说明v 有较大电流通过,采用内接法动端与c 接时I 2;u 2 ,u 有较大变化即121121I I -I u u -u >说明A 有较强的分压作用,采用内接法 测量电路 内、外接法 选择方法有三 ①R x 与 R v 、R A 粗略比较② 计算比较法 R x 与v A R R 比较 ③当R v 、R A 及R x 末知时,采用实验判断法: 二、供电电路 限流式、调压式以“供电电路”来控制“测量电路”:采用以小控大的原则电路由测量电路和供电电路两部分组成,其组合以减小误差,调整处理数据两方便三、选实验试材仪表和电路,按题设实验要求组装电路,画出电路图,能把实物接成实验电路,精心按排操作步骤,过程中需要测物理量,结果表达式中各符号的含义.选量程的原则:测u I,指针超过1/2, 测电阻刻度应在中心附近.方法: 先画电路图,各元件的连接方式先串再并的连线顺序明确表的量程,画线连接各元件,铅笔先画,查实无误后,用钢笔填,先画主电路,正极开始按顺序以单线连接方式将主电路元件依次串联,后把并联无件并上.注意事项:表的量程选对,正负极不能接错;导线应接在接线柱上,且不能分叉;不能用铅笔画 用伏安法测小电珠的伏安特性曲线:测量电路用外接法,供电电路用调压供电;。
高中物理力学解题技巧与复习注意事项(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中物理力学解题技巧与复习注意事项高中物理力学解题技巧与复习注意事项高中物理最难的部分就是力学,力学是物理的基础,物理中所学的很多知识都与力学有关,那么高中生如何学好高中物理最难的力学呢?学力学有什么好的方法和技巧呢?接下来本店铺为大家整理了高三物理学习内容,一起来看看吧!高中物理力学解题技巧1高中物理审题的技巧高中物理审题是最基础的。
高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。
在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。
可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。
ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。
(3)理解:①外力对物体做的总功等于物体动能的变化。
W 总=△E K =E K2-E K1 。
它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。
可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。
外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。
②注意的动能的变化,指末动能减初动能。
用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。
③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。
②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。