射频低噪声放大器设计与仿真
- 格式:pdf
- 大小:930.24 KB
- 文档页数:5
基于ADS低噪声放大器设计及仿真ADS是一种通用的射频、微波电路、系统设计和仿真工具,可以用于设计和仿真低噪声放大器。
在设计和仿真低噪声放大器时,有几个重要的步骤需要遵循。
首先,需要选择合适的低噪声放大器结构。
常见的结构包括共源共栅结构、共源共栅共板结构等。
在选择结构时,需考虑频率范围、增益、噪声系数等参数要求。
其次,需要选择适当的放大器器件。
可以选择P摄放大器、N型放大器、电离横流晶体管(HEMT)等。
在选择器件时,需考虑器件的噪声系数、增益特性、非线性特性等。
接下来,进行电路设计。
可以利用ADS提供的电路设计工具来设计低噪声放大器的电路。
根据选择的放大器结构和器件来设计电路的拓扑结构和参数。
设计完成后,需要进行电路的仿真。
可以利用ADS提供的仿真工具来仿真电路的性能。
通过仿真可以调整电路参数,优化低噪声放大器的性能。
在进行仿真时,可以分别对放大器的增益、噪声系数和非线性特性进行仿真。
可以通过特定的测试电路来测试放大器的增益和噪声系数,并分别将测试结果与设计指标进行比较。
在进行仿真时,还可以调整放大器的输入和输出匹配网络,以优化放大器的频率响应和增益。
可以逐步调整匹配网络的参数,并进行反复的仿真和优化,直到满足设计要求。
最后,还可以进行电路的布局和布线设计。
可以利用ADS提供的布局工具来设计电路的布局和布线。
通过优化布局和布线,可以减少电路的电磁干扰和信号损耗,提高低噪声放大器的性能。
综上所述,基于ADS进行低噪声放大器的设计和仿真可以帮助工程师快速设计出满足要求的低噪声放大器,并通过仿真来测试和优化放大器的性能。
忻州网络营销策划方案一、市场背景分析忻州是山西省下辖地级市,是山西省所辖原北部潞城地区最大的城市,位于山西省北部边陲,东与内蒙古自治区赤峰市接壤,西连吕梁市,南接朔州市,北临呼和浩特市。
忻州地处中国的北方粮仓和资源富集区之一,是典型的绿洲型农业城市。
忻州拥有丰富的农产品资源,其中以小麦、玉米、苹果、葡萄等农产品种植为主要特色。
而随着网络发展的迅猛,忻州互联网发展已经取得了长足的进步。
然而,目前忻州地区的网络营销还处于初始阶段,需要制定一套专业的网络营销策划方案,以提升忻州地区的网络营销能力和影响力。
二、目标受众分析1. 地域受众:忻州市及周边地区的居民、企业以及想要了解忻州的游客。
2. 年龄受众:无年龄限制,主要以青年人群和中老年群体为主。
3. 兴趣受众:对忻州地区的农产品、风土人情、旅游景点等感兴趣的人群。
4. 性别受众:男女不限。
三、目标和定位1. 目标:通过网络营销提升忻州地区的知名度和美誉度,促进忻州地区农产品的推广销售,吸引更多游客到忻州旅游观光。
2. 定位:将忻州品牌打造成具有地域特色和知名度的农产品品牌以及旅游目的地。
四、策划内容1. 网站建设:a. 设计一个符合忻州地域特色的官方网站,包括主页、产品介绍、旅游景点介绍、特色活动等板块。
b. 打造多语言版本的官方网站,以方便吸引国内外游客。
c. 优化网站结构,提高网站的可见性和用户体验。
2. 内容营销:a. 制作高质量的农产品介绍视频,展示农产品的生产过程以及质量保证。
b. 编写吸引人的旅游攻略和景点介绍,推广忻州地区的旅游资源。
c. 发布农产品和旅游相关的博客文章,提供有价值的内容给用户。
d. 定期更新网站内容,保持用户对网站的新鲜感。
3. 社交媒体营销:a. 建立忻州品牌在社交媒体平台的账号,包括微博、微信公众号等。
b. 定期发布农产品介绍、特色活动等信息,与粉丝进行互动交流。
c. 举办线上活动,如抽奖活动、线上直播等,提高用户参与感。
低噪声放大器的两种设计方法与低噪声放大器设计实例低噪声放大器的两种设计方法低噪声放大器(LNA)是射频收发机的一个重要组成部分,它能有效提高接收机的接收灵敏度,进而提高收发机的传输距离。
因此低噪声放大器的设计是否良好,关系到整个通信系统的通信质量。
本文以晶体管ATF-54143为例,说明两种不同低噪声放大器的设计方法,其频率范围为2~2.2 GHz;晶体管工作电压为3 V;工作电流为40 mA;输入输出阻抗为50 Ω。
1、定性分析1.1、晶体管的建模通过网络可以查阅晶体管生产厂商的相关资料,可以下载厂商提供的该款晶体管模型,也可以根据实际需要下载该管的S2P文件。
本例采用直接将该管的S2P文件导入到软件中,利用S参数为模型设计电路。
如果是第一次导入,则可以利用模块S-Params进行S参数仿真,观察得到的S参数与S2P文件提供的数据是否相同,同时,测量晶体管的输入阻抗与对应的最小噪声系数,以及判断晶体管的稳定性等,为下一步骤做好准备。
1.2、晶体管的稳定性对电路完成S参数仿真后,可以得到输入/输出端的mu在频率2~2.2 GHz之间均小于1,根据射频相关理论,晶体管是不稳定的。
通过在输出端并联一个10 Ω和5 pF的电容,m2和m3的值均大于1,如图1,图2所示。
晶体管实现了在带宽内条件稳定,并且测得在2.1 GHz时的输入阻抗为16.827-j16.041。
同时发现,由于在输出端加入了电阻,使得Fmin由0.48增大到0.573,Γopt为0.329∠125.99°,Zopt=(30.007+j17.754)Ω。
其中,Γopt是最佳信源反射系数。
1.3、制定方案如图3所示,将可用增益圆族与噪声系数圆族画在同一个Γs平面上。
通过分析可知,如果可用增益圆通过最佳噪声系数所在点的位置,并根据该点来进行输入端电路匹配的话,此时对于LNA而言,噪声系数是最小的,但是其增益并没有达到最佳放大。
因此它是通过牺牲可用增益来换取的。
基于ADS的低噪声放大器设计与仿真低噪声放大器(Low-Noise Amplifier, LNA)是射频电路中非常重要的一个部分,主要用于放大信号并减小信号中的噪声。
在无线通信系统中,LNA的性能对整体系统的灵敏度和性能有着较大影响。
因此,设计和优化LNA的性能是一个重要的任务。
为了设计和仿真低噪声放大器,我们可以使用射频电路设计工具ADS (Advanced Design System)。
以下是基于ADS的LNA设计和仿真步骤的详细说明:1.设定设计规格:首先,我们需要确定LNA的设计规格,包括增益、带宽、输入和输出阻抗以及噪声指标等。
这些规格将指导后续的设计和优化。
2.选择合适的器件模型:在ADS中,我们可以从器件库中选择合适的射频器件模型。
这些器件模型通常由芯片制造商提供,并包含了器件的电性能和行为特性。
3.组装电路拓扑:在ADS设计环境中,我们可以通过拖拽和连接器件模型,以及添加连接线和连接器等来组装电路拓扑。
根据设计规格,我们可以选择串联或并联的方式来组装放大器电路。
4.添加偏置电路:为了使LNA正常工作,我们需要添加适当的偏置电路。
这些偏置电路可以是直流电源、偏置电阻和偏置电容等。
5. 设计匹配网络:为了确保LNA的输入和输出阻抗与源和负载匹配,在ADS中,我们可以使用S参数和Smith图等工具来设计和优化匹配网络。
6.仿真性能指标:在设计完成后,我们可以使用ADS的模拟仿真工具来评估LNA的性能指标,如增益、噪声指标、稳定性和带宽等。
这些仿真结果可以帮助我们了解LNA的行为特性,识别并改进潜在的问题。
7.优化设计:根据仿真结果,我们可以进行一系列的设计优化,包括调整组件值、优化匹配网络、改变电路拓扑等。
通过不断地迭代优化,我们可以逐步接近设计规格的要求。
8.布局和封装:当设计满足规格要求后,我们可以进行布局设计和封装。
在ADS中,我们可以使用高级工具来完成布局和封装过程。
9.重新仿真和验证:在布局和封装完成后,我们需要重新进行仿真和验证。
利用ADS仿真设计低噪声放大器内容摘要:本文给出了利用ADS仿真设计低噪声放大器的设计方法及步骤,同时给出了该电路的优化仿真结果及电路性能在批量生产中的合格率。
通过设计方法可以看出,利用ADS进行微波电路仿真,它不但很方便的得出最佳电路设计,同时也能对微波电路的容差特性进行了仿真分析,是微波产品设计的良好工具。
关键词:S参量仿真、噪声系数、稳定性、YIELD、Y4IELD优化仿真。
1.引言:ADS软件在射频电路的仿真分析与设计方面的应用非常方便,通常对于小信号特性可以进行S参量仿真(?),可以得到电路的噪声系数、输入输出驻波比、增益及电路的稳定性。
在电原理分析中可以利用仿真器YIELD进行电路的合格率分析,可以利用仿真器YIELD OPTIM进行电路最大合格率的优化分析,从而得到电路的最佳容差设计。
利用ADS软件进行低噪声放大器的设计我们会采用以上的工具进行电路的设计与优化,输出一个合格率较高的产品设计,为最终产品的开发成功奠定良好的基础。
2.设计目标在无线通信领域,为了提高接收信号的灵敏度,一般在接收机的最前端放置低噪声放大器,由于低噪声放大器的噪声系数较小,而接收系统经过合理的增益分布后,噪声系数主要由低噪声放大器决定,因此,降低低噪声放大器的噪声系数,是提高接收灵敏度的一种关键手段。
本文讲述的是用PHEMT场效应管ATF34143进行电路第一级的设计方法。
对于电路的第二级以及后续电路可以采用MMIC微波单片放大器完成。
因此低噪声放大器的关键设计是电路的第一级。
我们利用ATF34143完成的第一级低噪声放大的设计目标是:频率范围:1710MHZ~1980MHZ增益:大于12dB增益平坦度:每5MHZ带内小于0.2 dB输入回波损耗:小于1.5输出回波损耗:小于2.0噪声系数:小于0.8dB (纯电路噪声系数不考虑连接损耗)第二级对第一级呈现纯50Ω阻抗。
3.仿真设计:a)利用小信号S参量仿真A TF34143场效应管的最佳噪声系数下的源阻抗匹配及负载阻抗匹配条件。
低噪声放大器的设计与仿真随着技术与工艺的提高,通信系统中限制通信距离的因素已不是信号的微弱程度,而是噪声干扰的程度。
克服噪声干扰是设计电子设备必须考虑的问题。
从广义上来讲。
噪声是指设计中不需要的干扰信号,然而各种各样的通信信号通常是以电波形式传播,因此,接收有用信号的同时,不可避免地混入各种无用信号。
即便是采取滤波、屏蔽等方法,还是会有或多或少无用的信号渗入到接收信道中,干扰后续信号处理。
在改善外部干扰的同时,还需充分发挥设计人员的主观能动性,即就是从接收机内部降低设备自身干扰,主要是采用低噪声放大器来实现。
因此,这里提出一种低噪声放大器的设计方案。
1 低噪声放大器技术指标与设计原则1.1 主要技术指标低噪声放大器的主要技术指标包括:噪声系数、功率增益、输入输出驻波比、反射系数和动态范围等。
由于设计低噪声放大器时,在兼顾其他各指标的同时,主要考虑噪声系数。
噪声系数是信号通过放大器(或微波器件)后,由于放大器(或微波器件)产生噪声使得信噪比变坏。
信噪比下降的倍数就是噪声系数,通常用NF表示。
放大器自身产生的噪声常用等效噪声温度表示。
噪声温度与噪声系数NF的关系式中,T0为环境温度,通常以绝对温度为单位,293 K,注意:这里的噪声系数NF并非以dB 为单位。
对于单级放大器,噪声系数的计算公式为式中,NFmin为晶体管最小噪声系数,由晶体管本身决定;Γout、Rn、Гs分别为获得NFmin时的最佳源反射系数、晶体管等效噪声电阻、晶体管输入端的源反射系数。
而多级放大器噪声系数的计算公式为式中,NF总为放大器整机噪声系数;NF1、NF2、NF3分别为第1,2,3级的噪声系数;G1、G2分别为第1,2级功率增益。
从式(3)看出,当前级增益G1和G2足够大时,整机的噪声系数接近第l级的噪声系数。
因此多级放大器中,第1级的噪声系数大小起决定作用。
1.2 设计原则1.2.1 晶体管的选取射频电路中低噪声晶体管的主要技术指标为:高增益、低噪声以及足够的动态范围。
射频技术及其应用实验报告系(院):信息与通信工程学院专业:通信工程班级:通信 1 0 - 2BF实验内容:低噪声放大器设计与仿真姓名:学号:序号:完成日期: 2 0 1 3 年 1 2 月 1 5日一、低噪声放大器设计与仿真1、基本原理放大器可分为低噪声放大器、高增益放大器、中功率放大器和大功率放大器。
电路组态按工作点的位置一次分为A类、B 类、C 类3种。
A类放大器用于小信号、低噪声,通常用作接收机前端放大器和功率放大器或功率放大器的前级放大。
B类和C类放大器电源效率高,输出信号谐波成分高,需要有外部混合电路或滤波电路。
低噪声放大器,噪声系数很低的放大器。
一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。
在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。
2、主要技术指标1)频率范围2)增益3)噪声系数4)动态范围3 低噪声放大器设计原则1)放大器中放大管的选择2)I/O匹配电路的设计原则3)电路中需要注意的一些问题4)低噪声放大器方便的设计手段5)同行业低噪声放大器的发展水平二、低噪声放大器的设计1、晶体管直流工作点扫描(1)创建一个新项目①启动ADS2009,选择MainWindows.②执行菜单命令,按照提示选择项目保存的路径和输入文件名。
③单击OK按钮,创建新项目。
④单击,新建电路原理图窗口,开始设计滤波器。
(2) 选择 Sources- Ti m e s D om ai n类→选择控件→放置到原理图中→双击修改属性使Vdc=VCE→选择控件→放置到原理图中→双击修改属性使I dc =IBB。
(3) 选择PtobeComponent s 类→选择控件放置到原理图中→在工具栏中选取单击图标→查找元件pb_ph_AT41511_19950125放置到原理图中。
(4)选择→选择控件放置到原理图中,双击修改属性。
低噪声放大器的设计与仿真(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除低噪声放大器的设计要求 (3)低噪声放大器的设计 (3)一、直流分析与偏置电路设计 (3)二、稳定性分析 (5)三、噪声系数圆和输入匹配 (6)四、最大增益的输出匹配 (8)五、电路整体微调 (10)六、版图设计 (13)心得与体会 (13)参考文献 (14)低噪声放大器的设计要求Use Avago’s ATF-331M4 to design a LNA1. Operation Frequency rang: GHz ~ GHz2. Noise Figure below dB;3. Gain > 13 dB; (Feasible maximum gain is dB at GHz)(曾经为15dB,后改为13dB)4. VSWR(input)<;5. VSWR(output)<;Use the schematic tool to simulate and realize it with the layout tool (Momentum) in ADS. Give both the schematic and layout of the final LNA amplifier circuit, detailed simulation procedure, and the simulation results obtained with both the schematic and layout circuit.低噪声放大器的设计低噪声放大器的设计步骤1、直流分析与偏置电路设计2、稳定性分析3、噪声圆系数与输入匹配4、最大增益的输出匹配5、电路整体微调6、版图设计以下将详细叙述这些设计步骤。
一、直流分析与偏置电路设计1、从ATF-331M4的说明文档如图1可以看出,2GHz下它在V DS为4V、I d为40-80mA时噪声系数在左右,且增益去到15dB以上,符合设计要求。
一、实验目的1、了解低噪声放大器的工作原理及设计方法。
2、学习使用ADS软件进行微波有源电路的设计,优化,仿真。
3掌握低噪声放大器的制作及调试方法。
二、设计思想LNA 是射频接收机前端的主要部分,它主要有四个特点。
首先,它位于接收机的最前端,这就要求它的噪声系数越小越好。
为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不宜过大。
放大器在工作频段内应该是稳定的。
其次,它所接受的信号是很微弱的,所以低噪声放大器必定是一个小信号放大器。
而且由于受传输路径的影响,信号的强弱又是变化的,在接受信号的同时又可能伴随许多强干扰信号输入,因此要求放大器有足够的线型范围,而且增益最好是可调节的。
第三,低噪声放大器一般通过传输线直接和天线或者天线滤波器相连,放大器的输入端必须和他们很好的匹配,以达到功率最大传输或者最小的噪声系数,并保证滤波器的性能。
第四,应具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器,所以必须LNA的指标进行综合折中考虑。
三、理论分析1、S参数,也就是散射参数。
是微波传输中的一个重要参数。
S12为反向传输系数,也就是隔离。
S21为正向传输系数,也就是增益。
S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。
、2、纹波指通带内信号的平坦度,即通带内最大衰减与最小衰减之间的差值,习惯上转换为用dB表示。
3、插入损耗:在理想情况下,射频电路中的理想滤波器在通带内是没有任何功率损耗的,然而在实际的工程设计中,不可能完全消除滤波器固有的一些功率损耗。
滤波器插入损耗及描述了通带内的功率损耗大小,其表达式为IL=-10log(Pin/Pl)对于一般的双端口网络而言,插入损耗A定义为:网络输出端接匹配负载时,网络输入端的入射功率Pin和负载吸收功率Pl之比。
即A=Pin/Pl=1/|S21|2.因此,滤波器的插入损耗也可以用散射参数S21来定义:IL=-10log(Pin/Pl)A=Pin/Pl=1/|S21|2=-10log|S21|2所以经计算要使4GHz插入损耗大于20dB即4GHz处S21<-20dB.4、在输入输出端口要端接特性阻抗为50Ω的SMA或SMB端子,保证输入输出阻抗50Ω。
基于ADS仿真的低噪声放大器设计类别:模拟技术1 引言低噪声放大器(LNA)位于射频接收机的前端,其主要功能是对微弱信号进行低噪声放大。
在低噪声放大器的设计过程中,要综合考虑其放大能力、噪声系数和匹配等因素,这需要大量的理论计算和smith圆图分析,给设计工作带来困难。
Advanced Design System(ADS)软件是Agilent公司在HPEESOF系列EDA软件基础上发展完善的综合设计软件,内含很多进行小信号放大器设计的控件,能实现大量的计算和smith圆图分析。
以下将介绍如何利用ADS设计和仿真低噪声放大器。
2 低噪声放大器的设计理论图1是放大器电路原理框图,其中r 表示源反射系数,r 表示负载反射系数。
不同的r 和r。
.将影响放大器的稳定性、噪声系数、增益、驻波等参数。
设计放大器的过程就是根据放大器的s参数,以及噪声系数、增益、驻波等的要求来确定TS和TL,然后根据TS和TL 确定输入、输出匹配网络。
图1 晶体管放大器电路原理框图低噪声放大器主要指标是噪声系数Ts ,其与源反射系数的关系如下:其中电阻,Topt是最佳源反射系数。
当Ts=Topt时,可以获得最低噪声系数 NFmin。
一般的低噪声放大器的输入匹配电路是按照噪声最佳来设计的,为了获得较高的功率增益和较好的输出驻波比,输出端采用输出共扼匹配。
3 低噪声放大器设计仿真和优化3.1 设计目标低噪声放大器设计的关键是电路的第一级。
对于低噪声放大器的第二级及后续电路,可以使用MMIC微波单片放大器来完成,其设计相对来说比较简单。
利用ATF一33143完成电路第一级的设计目标是:频率:1260MHz一1280MHz;增益:≥10dB;噪声系数:≤0.5dB;输入驻波比:≤1.5;输出驻波比:≤1.5。
3.2 仿真设计(1)建立模型上网下载ATF一33143的器件手册,其器件手册中提供了标准模型 J。
(2)确定工作点及偏置电路根据芯片在各直流工作点条件下的性能选择直流工作点。
低噪声放大器设计仿真及优化摘要快速发展的无线通信对微波射频电路如低噪声放大器提出更高的性能。
低噪声放大器(LNA)广泛应用于微波接收系统中,是重要器件之一,它作为射频接收机前端的主要部分,其主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据。
它的噪声性能直接决定着整机的性能,进而决定接收机的灵敏度和动态工作范围。
而近年来由于无线通信的迅猛发展也对其提出了新的要求,主要为:低噪声、低功耗、低成本、高性能和高集成度。
所以本论文针对这一需求,完成了一个2.45GHz无线射频前端接收电路的低功耗低噪声放大器的设计。
本文从偏置电路、噪声优化、线性增益及输入阻抗匹配等角度分析了电路的设计方法,借助 ADS 仿真软件的强大功能对晶体管进行建模仿真,在这个基础上对晶体管的稳定性进行了分析,结合 Smith 圆图,对输入输出阻抗匹配电路进行了仿真优化设计,设计了一个中心频率为2.45GHz、带宽为100MHz、输入输出驻波比小于1.5、噪声系数小于2dB和增益大于15dB的低噪声放大器。
关键词:微波;低噪声放大器;噪声系数;匹配电路;ADS仿真ABSTRACTRapid growth of wireless data communications Microwave communication system receiver, as the main part of the RF front-end receiver, the function of the low noise amplifier is amplifying the faint signal which incepted from air by the antenna. It can reduce the noise jamming, so as to demodulate right information for the system. The noise performance of the LNA will affect the performance of the whole system directly, and then deciding the sensitivity and dynamic working scope of the receiver.From the aspect of bias circuit, noise optimization, linear gain, impedance match, and the design methodology for LNA is analyzed, This article carries on the modelling simulation with the aid of the ADS simulation software's powerful function to the transistor, the analysis in this foundation to transistor's stability, the simulation optimization design. a radio frequency power amplifier is designed, which 1.5, Noise coefficient less than 2dB and Wattandgain 15dB.Key Words:microwave;low-noise amplifier; noise figure; matching circuit; ADS simulation目录1引言 (1)1.1课题研究背景 (1)1.2低噪声放大器简介 (2)1.3低噪声放大器的发展现状 (2)1.4本课题的研究方法及主要工作 (3)2低噪声放大器理论综述 (5)2.1史密斯圆图 (5)2.2S参数 (6)2.3长线的阻抗匹配 (6)2.3.1微波源的共轭匹配 (7)2.3.2负载的匹配 (7)2.3.3匹配方法 (7)2.4微带线简介 (7)2.5偏置电路 (8)3低噪声放大器的基本指标 (9)3.1工作频带 (9)3.2带宽 (9)3.3噪声系数 (9)3.4增益 (10)3.5稳定性 (11)3.6端口驻波比和反射损耗 (12)4低噪声放大器设计仿真及优化 (13)4.1指标目标及设计流程 (13)4.2选取晶体管并仿真晶体管参数 (13)4.3晶体管S参数扫描 (15)4.4放大器的稳定性分析.......................................................... 错误!未定义书签。
射频实验报告:低噪声放大器课程实验报告《集成电路设计实验》2010- 2011学年第 1 学期班级:低噪声放大器实验名称:指导教师:姓名学号:实验时间:2011年5月22日一、实验目的:1、了解基本射频电路的原理。
2、理解基本低噪声放大器的工作原理并设计参数。
3、掌握Cadence的运用,仿真。
二、实验内容:1、画出低噪声放大器的原理图。
2、仿真电路:仿真出低噪放大器的的输出增益,噪声增益,史密斯图等。
Gain=22dB,NF=1.8dB,S11<-15dB,Kf>1,B1f<1,IP1dB=-14dBm。
三、实验结果1、放大器原理图为:2、输入匹配网络参数根据晶体管S11参数和要求的输入S11及增益,设置如下,L2=20n,L3=7n,C6=1.2p3、仿真结果(1)输出增益及噪声增益(sp仿真,看NF,GT)(2)S11结果(sp仿真,看sp中的s11)(3)史密斯圆(4)静态电流和静态电压仿真DC,得到沟道电流Id=4.28mA,栅源电压Vgs=1.036V,(5)稳定因子K<,LNA不产生振荡仿真SP,得到频带内稳定因子K=4.4~5.2,1(6)LNA的增益LNA的在-60dBm~-35dBm内有稳定的增益,电压增益约为28dB(7)输入输出VSWR输入电压驻波比在带内最大为1.3 最小为1.03输出电压驻波比在带内最大2.7,最小1.5(8)LNA的S参数(1)仿真SP控件,得到LNA的S21为17dBm~18.3dBm(2)查看输入反射情况,得到在1.3GHz中心频点处S11=-34dB,带内最大-18dB,(9)功率增益1、通过查看传输功率,得到下图,得到带内最大18.3dBm,最小17.2dBm2、查看资用功率增益,得到带内最大值18.6dBm,最小18.22dBm(10)、1dB压缩点仿真PSS,查看输入输出线性情况,得到IP1= -18dBm,3、心得体会实验越往后面,遇到的问题就越多,开始时电路参数的设置出现了偏差,到最后加了稳定电路并且调整了参数才得于仿真出来。