高中物理变力做功的解法总结
- 格式:doc
- 大小:74.50 KB
- 文档页数:4
用功的公式求变力做功的几种方法一、知识讲解功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa 只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:1、等值法等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
而恒力做功又可以用W=FScosa 计算,从而使问题变得简单。
例1、如图,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A 点运动到B 点过程中,绳的拉力对滑块所做的功。
分析与解:设绳对物体的拉力为T ,显然人对绳的拉力F 等于T 。
T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。
由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移大小为:βαsin sin 21h h S S S -=-=∆ )sin 1sin 1(.βα-=∆==Fh S F W W F T 2、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例2 、如图所示,某力F=10N 作用于半径R=1m 的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为:A 、 0JB 、20πJC 、10JD 、20J.分析与解:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=F ΔS ,则转一周中各个小元段做功的代数和为W=F ×2πR=10×2πJ=20πJ ,故B 正确。
F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
变力做功的解题方法在中学阶段,功的计算公式只适用于恒力做功的情况,对于一些变力做功的情形,往往是不能直接应用此公式来直接计算。
如何来求解变力所做的功呢?通常有以下几种方法。
一、力的平均值法通过求力的平均值,然后求变力的平均力做功的方法,一般是用于力的大小与位移成一次函数关系的直线运动中。
1.如图所示,劲度系数为的轻质弹簧一端固定在墙上,另一端连接一质量为的滑块,静止在光滑水平面上O点处,现将滑块从位置O拉到最大位移处由静止释放,滑块向左运动了s米().求释放滑块后弹簧弹力所做的功。
二、将变力处理成恒力将变力处理成恒力的方法,一般只在力的大小一直不变,而力的方向遵循某种规律的时候才用。
2.如图所示,有一台小型石磨,某人用大小恒为F,方向始终与磨杆垂直的力推磨。
假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?3.如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A点起由静止开始上升。
若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为W1和W2,滑块在BC两上点的动能分别为E kB和E kC,图中AB=BC,则一定有()A.W1>W2 B.W1<W2C.E kB>E kC D.E kB<E kC三、图像法表示力随位移变化规律的图象叫做示功图。
其纵坐标轴表示作用在物体上的力F,横坐标轴表示力的作用点在力的方向上的位移s。
图象、力轴、位移和由位移决定的与力轴平行的直线所围成的面积在数值上等于变力所做的功。
4.如图所示,一个劲度系数为的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴线施一水平力将弹簧拉长,求在弹簧由原长开始到伸长量为x1过程中拉力所做的功。
如果继续拉弹簧,在弹簧的伸长量由x1增大到x2的过程中,拉力又做了多少功?5.用铁锤将一枚铁钉钉入木块中,设木块对铁钉的阻力与铁钉进入木块内的深度成正比,在铁锤钉第一次时,能把铁钉钉入木块内的深度为1cm,问钉第二次时,能钉入的深度为多少?(设铁锤每次做功相等)四、功率法当机车以恒定功率工作时,在时间内,牵引力做的功。
变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
变力做功的解法一、化变力为恒力求变力功变力做功直接求解时,通常都比较复杂,但若通过转换研究的对象,有时可化为恒力做功,可以用W=Fl cos α求解.此法常常应用于轻绳通过定滑轮拉物体的问题中.1.如图所示,某人用大小不变的力F拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角是α,当拉力F作用一段时间后,绳与水平面间的夹角为β.已知图中的高度是h,求绳的拉力F T对物体所做的功.假定绳的质量、滑轮质量及绳与滑轮间的摩擦不计.二、用平均力求变力功在求解变力功时,若物体受到的力的方向不变,而大小随位移是成线性变化的,即力均匀变化时,则可以认为物体受到一大小为F=F1+F22的恒力作用,F1、F2分别为物体初、末态所受到的力,然后用公式W=F l cos α求此力所做的功.2.把长为l的铁钉钉入木板中,每打击一次给予的能量为E0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k.问此钉子全部进入木板需要打击几次?三、用F-x图象求变力功在F-x图象中,图线与x轴所围“面积”的代数和就表示力F在这段位移所做的功,且位于x轴上方的“面积”为正,位于x轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况.[典例3] 放在地面上的木块与一轻弹簧相连,弹簧处于自由伸长状态.现用手水平拉弹簧,拉力的作用点移动x1=0.2 m时,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m的位移,其F-x图象如图所示,求上述过程中拉力所做的功.四、用动能定理求变力功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.4.如图甲所示,一质量为m=1 kg的物块静止在粗糙水平面上的A点,从t=0时刻开始物块受到如图乙所示规律变化的水平力F的作用并向右运动,第3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,求:(g=10 m/s2)(1)A与B间的距离;(2)水平力F在前5 s内对物块做的五、利用微元法求变力功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.5.如图所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为F f,求小球在运动的这一周内,克服摩擦力所做的功.变力做功的解法的答案1.W T =W F =F Δl =Fh ⎝ ⎛⎭⎪⎫1sin α-1sin β 2.在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功.钉子在整个过程中受到的平均阻力为:F =0+kl 2=kl 2钉子克服阻力做的功为:W F =Fl =12kl 2 设全过程共打击n 次,则给予钉子的总能量:E 总=nE 0=12kl 2,所以n =kl 22E 03. 由F -x 图象可知,在木块运动之前,弹簧弹力随弹簧伸长量的变化是线性关系,木块缓慢移动时弹簧弹力不变,图线与横轴所围梯形面积即为拉力所做的功,即W =12×(0.6+0.4)×40 J =20 J. 4. (1) A 与B 间的距离为x =12at 2=4 m. (2) W =2μmgx +max =24 J.5.将小球运动的轨迹分割成无数个小段,设每一小段的长度为Δx ,它们可以近似看成直线,且与摩擦力方向共线反向,如图所示,元功W ′=F f Δx ,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即W =∑W ′=F f ∑Δx =2πRF f .Welcome !!! 欢迎您的下载,资料仅供参考!。
变力做功的求解方法功是一个基本物理量,功是能量转化的量度.因此,功的计算在中学物理中占有十分重要的地位.中学阶段所学的功的计算公式W=FS COS α只适用于计算恒力做功情况,但如果是变力做功,一般不能用该公式去计算.那么,在高中知识的范围内如何处理有关变力做功的问题呢?本文介绍几种常见的求解方法.一、 用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,其表达式是W 外=ΔE k,W 外是指物体受到的所有外力对物体所做功的代数和,ΔE k是物体动能的变化量.如果我们所研究的多个力中,只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.例1.如图1所示,一质量为m 的小球,用长为L 的轻绳悬挂在O 点,小球在水平拉力F 的作用下,从平衡位置A 点缓慢地移到B 点,求力F 所做的功?分析:小球从A 点拉到B 点时,受重力、绳子的拉力和水平拉力F ,由受力分析知F=mg tan θ,随着θ的增大,F也增大,故F 是变力,因此不能直接用W=FS COS θ计算.解:从A 缓慢拉到B ,由动能定理得:WF-WG=ΔEK,因为小球缓慢移动,速度可视为零,即动能的变化量ΔEK为零,则有:WF=WG=mgL(1-COS θ) .二、用机械能守恒定律求解如果物体只受重力和弹力作用或只有重力和弹力做功时,所研究的系统的机械能守恒.如果重力和弹力中有一个力是变力,这个变力所做的功就可用机械能守恒定律求解.例2.一条均匀铁链的长度为a,置于足够高的光滑桌面上,如图2所示.铁链的下垂部分长度为b,并由静止开始从桌上滑下,当铁链的最后一节离开桌面时,求铁链的速度及在这一过程中重力所做的功为多少?分析:铁链在下落过程中,下垂部分不断增长,因此,这部分所受的重力是变力,整个铁链的运动也是在该变力作用下的运动,是变力做功问题.解:取桌面为零势能面,设整个铁链质量为m,下垂部分质量为m0.则有:ab m m =0,m a b m =0, 链条开始下滑时:动能E k1=0,势能E p1=-2b m0g=-a b 22mg,机械能E 1=E k1+E p1=-ab 22mg, 设链条全部离开桌面时的瞬时速度为v,此时:动能E k2=21mv2,势能E p2=-2a mg,机械能E 2=21mv2-2a mg, 根据机械能守恒定律有E 1=E 2,即:-ab 22mg=21mv2-2a mg, 解得:v=ab a g )(22-.因此,在这一过程中重力所做的功为:W G=ΔE k=21mv2-0=)(222b a amg -. 三、用功能原理求解如果系统除重力和弹力之外的力对物体做功,系统的机械能就会发生变化,而且这些力做了多少功,系统就有多少机械能发生变化,这就是功能原理.如果这些力是变力或只有一个变力做功,而其它力对物体做的功和系统机械能的变化量容易求得,就可以用功能原理求解变力做功问题.例3.质量为m 的均匀链条长为L ,自然堆放在光滑的水平面上,现用力F 将其一端竖直向上缓慢地提起,求该链条另一端刚好离开水平面时拉力F 所做的功?分析:链条上提过程中提起部分的重力逐渐增大,作用在链条上的拉力是变力,因此不能直接用W=FS COS α计算.根据功能原理,上提过程中拉力F 所做的功等于机械能的增量,故可以用功能原理求解.解:当链条刚被全部提起时,动能没有变化,重心升高了L ,故机械能增加量为:ΔE=mgL ,根据功能原理知力F 所做的功为:W=mgL .四、用公式W=Pt 求解将功率的定义式P=t W 变形,得W=Pt .在求解交通工具牵引力做功问题时经常用到此公式. 例4.质量为5×105kg 的机车,以恒定功率从静止开始起动,所受阻力是车重的0.06倍,机车经过5min速度达到最大值108km /h ,求机车的功率和机车在这段时间内所做的功?分析:因机车的功率恒定,当机车从静止开始达到最大速度的过程中,牵引力不断减小,当速度达到最大值时,机车所受牵引力达到最小值,与阻力相等.在这段时间内机车所受阻力可认为是恒力,牵引力是变力,因此,机车做功不能直接用W=FS COS α求解,但可用公式W=Pt 来计算.解:根据题意,机车所受阻力f =kmg ,当机车速度达到最大值v max时,机车牵引力F=f =kmg ,故机车的功率为:P=FVmax=kmgv max=0.06×5×105×10×3600101083⨯W=9×106W, 根据W=Pt,得机车所做的功为:W=9×106×300J =2.7×109J.五、用图象法求解如果力F 随位移的变化关系明确,始末位置清楚,可在平面直角坐标系内画出F —x 图象,图象下方与坐标轴所围的“面积”即表示功。
变力做功的四种类型①利用平均值法求变力做功(或示功图) ②分过程求变力做功。
③微元法求变力作功。
④转移法(将变力转做为恒力做功)例1:质量为1kg 的物体在变力作用下,自静止起加速运动,已知作用F 随位移S 变化的规律是:F=(10+3S )N ,则该物体经4m 位移后力F 做的功为多少焦?解法一:因变力F 随位移S 线性变化,则变力F 的平均F 为:12(1030)(1034)1622F F F N ++⨯++⨯=== 变力F 所做的功为:16464W FS J ==⨯= 解法二:力F 随位移S 是均匀增大的,据此做出F=S 图象,因为功是力在空间积累的效果,所以力F 所做的功等于图形中梯形的面积。
“即”121(1022)42 =64JW =+⨯(a+b )h=巩固练习一、劲度系数为k 的弹簧,用力拉它,当它伸长x 时,所用的拉力为F ,求此力所做的功。
解:由于力F 的大小与位移成正比,所以变力F 可以用平均力来替代,也就是说,变力F 做的功等于它的平均力F 做的功即:2122o kx W FS x kx +=== 示功图为: S 面=例2:以一定初速度竖直向上抛出一小球,小球上升的最大高度为h ,空气阻力的大小恒为()A 、零B 、fh -C 、2fh -D 、4fh -分析:整个过程,小球所受阻力的方向变化了,所以是变力,如何求这一变力做的功,可分段处理,上升和下降阶段,阻力均做负功,且均为fh -,故总功为2fh -.例3:沿着半径为R 的圆周做匀速运动的汽车,运行一周回到原出发点的过程中,牵引力和摩擦力各做功为多少?已知摩擦力f解析:做圆周运动的物体,速度方向总沿其切线方向,故牵引力也沿其切线议长阻力与牵引力方向相反,故这两个力都是变力,则采用微元法解决。
把圆周分成无数小段,在第一小段里可以看成作直线运动:则牵引力做功 123n WF F S F S F S F S =∆+∆+∆++∆ 123=F(S +S +)n S S ∆∆∆++∆=f.2R π 同理摩擦力做功为: wf=-f.2R π巩固练习:水平面上,有一弯曲的槽道AB ,槽道由半径分别为R/2和R 的两个半圆构成,现有大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向同时与小球的运动方向一致,则此过程中,拉力做功为 ( )A 、0B 、FRC 、23RF π D 、2FR π例4:在光滑的水平面上,物体在恒力F=100N 作用下F 从A 点运动到B 点,不计滑轮的大小,不计绳滑轮的质量,及滑轮与绳间的摩擦:已知002.4 37 53H m a β===求拉力F 对物体做的功。
高考物理:变力做功的求解方法!一、变力做功的计算方法1、用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。
如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理表达式就可以求出这个变力所做的功。
2、用功能原理系统内除重力和弹力以外的其他力对系统所做功的代数和等于该系统机械能的增量。
若在只有重力和弹力做功的系统内,则机械能守恒(即为机械能守恒定律)。
3、利用W=Pt求变力做功这是一种等效代换的思想,用W=Pt计算功时,必须满足变力的功率是一定的。
4、转化为恒力做功在某些情况下,通过等效变换可将变力做功转换成恒力做功,继而可以用求解。
5、用平均值当力的方向不变,而大小随位移做线性变化时,可先求出力的算术平均值,再把平均值当成恒力,用功的计算式求解。
6、微元法对于变力做功,我们不能直接用公式进行计算,但是可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,其具有普遍的适用性。
在高中阶段主要用这种方法来解决大小不变、方向总与运动方向相同或相反的变力做功的问题。
二、摩擦力做功的特点1、静摩擦力做功的特点:A、静摩擦力可以做正功,也可以做负功,还可以不做功。
B、在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。
C、相互摩擦的系统内,一对静摩擦力所做功的代数和总是等于零。
2、滑动摩擦力做功的特点:如图所示,顶端粗糙的小车,放在光滑的水平地面上,具有一定速度的小木块由小车左端滑上小车,当木块与小车相对静止时木块相对小车的位移为d,小车相对地面的位移为s,则滑动摩擦力F对木块做的功为W木=-F(d+s)①由动能定理得木块的动能增量为ΔE k木=-F(d+s)②滑动摩擦力对小车做的功为W车=Fs ③同理,小车动能增量为ΔE k车=Fs ④②④两式相加得ΔE k木+ΔE k车=-Fd ⑤⑤式表明木块和小车所组成系统的机械能的减少量等于滑动摩擦力与木块相对于小车位移的乘积,这部分能量转化为内能。
五种方法搞定变力做功一.微元法思想。
当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w •=来求解,但是可以将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。
例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
求此过程中摩擦力所做的功。
思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果 图1图2把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功二、平均值法当力的大小随位移成线性关系时,可先求出力对位移的平均值221F F F +=,再由αcos L F W =计算变力做功。
如:弹簧的弹力做功问题。
例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则小物块运动到x 0处时的动能为 ( ) A .0 B .021x F mC .04x F m πD .204x π【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为04m F x π.C 答案正确.三.功能关系法。
功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。
例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系一定是:A .E KB -E KA =E KC -E KB B .E KB -E KA <E KC -E KB C .E KB -E KA >E KC -E KBD .E KC <2E KBF x 0FxF •Ox 0图2-甲图2乙【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD.四.应用公式Pt W =求解。
变力做功的解法
一、化变力为恒力求变力功
变力做功直接求解时,通常都比较复杂,但若通过转换研究的对象,有时可化为恒力做功,可以用W=Fl cos α求解.此法常常应用于轻绳通过定滑轮拉物体的问题中.
1.如图所示,某人用大小不变的力F拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角是α,当拉力F作用一段时间后,绳与水平面间的夹角为β.已知图中的高度是h,求绳的拉力F T对物体所做的功.假定绳的质量、滑轮质量及绳与滑轮间的摩擦不计.
二、用平均力求变力功
在求解变力功时,若物体受到的力的方向不变,而大小随位移是成线性变化的,
即力均匀变化时,则可以认为物体受到一大小为F=F1+F2
2的恒力作用,F1、F2分别为
物体初、末态所受到的力,然后用公式W=F l cos α求此力所做的功.
2.把长为l的铁钉钉入木板中,每打击一次给予的能量为E0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k.问此钉子全部进入木板需要打击几次?
三、用F-x图象求变力功
在F-x图象中,图线与x轴所围“面积”的代数和就表示力F在这段位移所做的功,且位于x轴上方的“面积”为正,位于x轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况.
[典例3] 放在地面上的木块与一轻弹簧相连,弹簧处于自由伸长状态.现用手水平拉弹簧,拉力的作用点移动x1=0.2 m时,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m的位移,其F-x图象如图所示,求上述过程中拉力所做的功.
四、用动能定理求变力功
动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.
4.如图甲所示,一质量为m=1 kg的物块静止在粗糙水平面上的A点,从t=0时刻开始物块受到如图乙所示规律变化的水平力F的作用并向右运动,第3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,求:(g=10 m/s2)
(1)A与B间的距离;
(2)水平力F在前5 s内对物块做的
五、利用微元法求变力功
将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.
5.如图所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为F f,求小球在运动的这一周内,克服摩擦力所做的功.
变力做功的解法的答案
1.W T =W F =F Δl =Fh ⎝⎛⎭⎫1sin α-1sin β
2.在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功.
钉子在整个过程中受到的平均阻力为:
F =0+kl 2=kl 2
钉子克服阻力做的功为:W F =Fl =12kl 2
设全过程共打击n 次,则给予钉子的总能量:
E 总=nE 0=12kl 2,所以n =kl 2
2E 0
3. 由F -x 图象可知,在木块运动之前,弹簧弹力随弹簧伸长量的变化是线性关系,木块缓慢移动时弹簧弹力不变,图线与横轴所围梯形面积即为拉力所做的功,
即W =12×(0.6+0.4)×40 J =20 J.
4. (1) A 与B 间的距离为x =12at 2=4 m.
(2) W =2μmgx +max =24 J.
5.将小球运动的轨迹分割成无数个小段,设每一小段的长度为Δx ,它们可以近似看成直线,且与摩擦力方向共线反向,如图所示,元功W ′=F f Δx ,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即W =∑W ′=F f ∑Δx =2πRF f .。