高中物理中的变力做功
- 格式:doc
- 大小:21.50 KB
- 文档页数:2
高中物理变力做功问题纲要:在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教课的难点。
本文举例说了然在高中阶段求变力做功的常用方法,比方用动能定理、功率的表达式W Pt 、功能关系、均匀值、 F s 图像、微元积累法、变换参照系等来求变力做功。
重点词:功変力对于功的定义式动能定理Fscos W=功率功能关系均匀值图像微元积累法,此中的 F 是恒力,合用于求恒力做功,此中的变换参照系s 是力 F 的作用点发生的位移,是力 F 与位移s 的夹角。
在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教课的难点。
求变力做功的方法好多,比方用动能定理、功率的表达式W Pt 、功能关系、均匀值、 F s 图像、微元积累法、变换参照系等来求变力做功。
一、运用功的公式求变力做功求某个过程中的変力做功,能够经过等效法把求该変力做功变换成求与该変力做功相同的恒力的功,此时可用功定义式 W=Fs cos求恒力的功,进而可知该変力的功。
等效变换的重点是剖析清楚该変力做功究竟与哪个恒力的功是相同的。
例 1:人在 A 点拉着绳经过必定滑轮吊起质量m=50Kg的物体,如图 1 所示,开始绳与水平方向夹角为60 ,当人匀速提起重物由 A 点沿水平方向运动s2m 而抵达B点,此时绳与水平方向成 30 角,求人对绳的拉力做了多少功?【分析】人对绳的拉力大小固然一直等于物体的重力,但方向却时辰在变,而已知的位移 s 方向向来水平,所以没法利用W=Fscos直接求拉力的功 . 若变换一下研究对象则不难发现,人对绳的拉力的功与绳对物体的拉G6030力的功是相同的,而绳对物体的拉力则是恒力,可利用 W=Fscos求了!设滑轮距地面的高度为h,则:h cot 30cot 60s A B图 1人由 A 走到 B 的过程中,重物上涨的高度h 等于滑轮右边绳索增添的长度,即:h h,人hsin 60sin 30对绳索做的功为: W mg h mgs 3 11000 3 1 J732J二、运用动能定理求变力做功动能定理的表述:合外力对物体做功等于物体的动能的改变,或外力对物体做功的代数和等于物体动能的改变。
求变力做功的几种方法变力做功是物理学中的一个重要概念。
力可以改变物体的状态,让物体移动、加速或减速。
做功就是施加力使物体移动的过程中能量的转移。
以下将介绍几种常见的变力做功的方法。
1.推力做功:将物体推向前方时,施加的力与物体的位移方向一致,即力和位移向量的夹角为0度。
例如,我们推车子或推行李箱时,就是通过推力来做功。
2.拉力做功:这种方式与推力做功相反,即施加的力与物体的位移方向相反,力和位移向量的夹角为180度。
例如,我们拉拽一根绳子或拉弓发射箭矢时,施加的力与物体的运动方向相反。
3.重力做功:重力是地球吸引物体向地心运动的力。
当一个物体从高处下落时,重力对物体做功。
在这种情况下,重力与物体的位移方向相同,力和位移向量的夹角为0度。
4.弹力做功:当有弹簧或橡皮带等弹性物体被拉伸或压缩时,会产生弹力。
弹力做功是将弹性势能转化为动能的过程。
例如,我们拉伸弓弦时,弓的张力对箭矢做功,让它飞行。
5.摩擦力做功:当物体在表面上移动时,与表面接触的粒子之间会产生摩擦力。
摩擦力做功是将机械能转化为热能的过程。
例如,我们用力推动一个滑动在地面上的物体时,摩擦力会做功,使物体停下来。
6.磁力做功:磁力是磁体之间的相互作用力。
当磁场改变时,施加在物体上的磁力会做功。
例如,我们用电磁铁吸起一个金属球时,磁力会做功,将物体从地面抬起。
7.电力做功:电力是在电子之间产生的相互作用力。
当电流通过电阻产生的电阻力与电子的移动方向相对立时,电力会做功。
例如,电流通过电灯丝时,电力会转化为热能和光能,使灯泡发亮。
总结起来,变力做功的方法主要包括推力做功、拉力做功、重力做功、弹力做功、摩擦力做功、磁力做功和电力做功。
通过施加不同的力,我们可以改变物体的状态和能量的转移,从而实现各种实际应用。
F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
变力做功的探讨功的计算,在高中物理中占有十分重要的地位,在高中物理中占有十分重要的地位,而高考中又经常涉及到此类问题,而高考中又经常涉及到此类问题,而高考中又经常涉及到此类问题,但由于高中阶段所学的功的计但由于高中阶段所学的功的计算公式a cos Fs W =只能用于恒力做功情况,对于变力做功或物体运动轨迹是曲线时,不能用a cos Fs W =来计算功的大小。
常见的方法有以下几种:微元法、平均力法、图象法、等值法和能量转化的办法。
一:微元法 一些变力一些变力((指大小不变指大小不变,,方向改变方向改变,,如滑动摩擦阻力如滑动摩擦阻力,,空气阻力空气阻力),),),在物体做曲线运动或往复运动过程中在物体做曲线运动或往复运动过程中在物体做曲线运动或往复运动过程中,,这些力虽然方向变这些力虽然方向变,,但每时每刻与速度反向但每时每刻与速度反向,,此时可化成恒力做功此时可化成恒力做功,,方法是分段考虑方法是分段考虑,,然后求和然后求和..老驴拉磨时拉力做功跟圆周运动时向心力做功是否一样?“微分”的方法,将运动轨迹细分为若干段,就可以将每一段可以看作直线,在这一过程中的变力当作恒力,以“恒定”代“变化”,以“直”代“曲”,再根据nnn s F s F s F Waaacos cos cos 222111+¼¼++=来求变力的功。
例题1:如图1,某人用大小不变的力F 转动半径为R 的圆盘,但力的方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做的功。
解:在转动的过程中,力F 的方向上课变化,但每一瞬时力F 总是与该时刻的速度同向,那么F 在每一瞬时就与转盘转过的极小位移s D 同向,因此无数的瞬时的极小位移n ss s s D ¼¼D D D ,321,,,都与F 同向。
在转动的过程中,力F 做的功应等于在各极小位移段所做的功的代数和,有:FRs s s s F s F s F s F s F W nnp 2)(321321=D +¼¼+D +D +D =D +¼¼+D +D +D = 二等值法等值法是若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
教学信息新教师教学功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa 只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:1.等效法等效法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
而恒力做功又可以用W=FScosa 计算,从而使问题变得简单。
例:如图,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A点运动到B 点过程中,绳的拉力对滑块所做的功。
分析与解:设绳对物体的拉力为T ,显然人对绳的拉力F 等于T 。
T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。
由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移大小为:2.微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例:如图所示,某力F=10N 作用于半径R=1m 的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为:A 、0JB 、20πJC 、10JD 、20J 分析与解:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=F ΔS ,则转一周中各个小元段做功的代数和为W=F ×2πR=10×2πJ=20πJ ,故B 正确。
3.平均力法若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式W 求解。
变力做功的公式(一)变力做功的公式及例解析变力做功是物理学中的重要概念,用于描述力对物体做功的过程。
下面列举了与变力做功有关的公式,并给出了相应的例子来说明。
1. 变力做功的一般公式变力做功的一般公式可以表示为:W=∫Fx2x1(x) dx其中,W表示功,F(x)表示施加在物体上的力,x表示物体的位移。
例子1:假设一个弹簧定律符合Hooke定律,其伸长的长度与受力的关系为F(x)=kx,其中k为弹簧的弹性系数,x为弹簧伸长的长度。
如果我们要计算当弹簧从x1伸长到x2时,因弹簧力做的功,可以使用上述公式进行计算。
W=∫kx2x1x dx=12kx2|x1x22. 一维变力做功的公式对于一维情况下的变力做功,可以使用以下公式计算:W=∑F iΔx i其中,W表示功,F i表示作用在物体上的各个力,Δx i表示物体在每个力作用下的位移。
例子2:考虑一个质量为m的物体在水平面上,分别受到施加在它上面的三个力F1、F2和F3。
如果该物体在力F1的作用下移动了Δx1,在力F2的作用下移动了Δx2,在力F3的作用下移动了Δx3,则可以通过上述公式计算出这三个力的总功。
W=F1Δx1+F2Δx2+F3Δx33. 二维变力做功的公式对于二维情况下的变力做功,可以使用以下公式计算:W=∫FC⋅dr其中,W表示功,F表示施加在物体上的力矢量,dr表示物体沿曲线C的微小位移矢量。
例子3:考虑一个质点沿着一条光滑曲线C由点A移动到点B,施加在质点上的力可以表示为F=F x i+F y j。
如果我们要计算该力在质点从A到B 的路径上所做的功,可以使用上述公式进行计算。
W=∫(F x i+F y j)C ⋅(dxi+dyj)=∫(F x dx+F y dy)C以上就是关于变力做功的公式及相应例子的说明。
通过这些公式,我们可以在实际问题中计算出力对物体所做的功,进一步理解和应用力学原理。
求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法.一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgL C.:θsi n FL D:θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。
那么就可以用重力做的功替代拉力做的功。
解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F故B 答案正确。
小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。
二。
微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和。
变力做功的公式(二)变力做功的公式在物理学中,力是指物体之间的相互作用引起的物体运动或形变的原因,而功则是描述力对物体所做的工作或能量转移的量。
当力的大小和方向随时间变化时,我们需要使用变力做功的公式来计算功。
1. 变力做功的公式变力做功的公式可以表示为:[Variable force formula](其中,W表示做功(工作量),F(x)表示力随位置x的变化而变化。
2. 举例解释说明•例子1:弹簧伸长假设有一个弹簧,弹簧的力与伸长的位置呈线性相关,即F(x) = kx,其中k为弹簧的劲度系数。
我们将弹簧从原始位置拉伸到x处,求解变力做的功。
根据变力做功的公式,我们可以计算功:[Example 1 equation](对上式进行积分,可得:[Example 1 calculation](因此,当我们将弹簧从原始位置拉伸到x处时,所做的功为W =1/2kx^2。
从这个例子可以看出,在弹簧伸长的过程中,所做的功与伸长的距离的平方成正比。
•例子2:重力加速度下的自由落体考虑一个物体在重力加速度的作用下自由落体的情况。
重力始终垂直于物体的运动方向,并且大小恒定为mg,其中m为物体的质量,g 为重力加速度。
假设物体下落的距离为x,我们来计算物体下落过程中所做的功。
根据变力做功的公式,我们可以计算功:[Example 2 equation](对上式进行积分,可得:[Example 2 calculation](因此,物体下落过程中所做的功为W = mgx。
这个例子告诉我们,在重力加速度的作用下,物体下落的过程中所做的功与下落的距离成正比。
总结通过以上两个例子,我们可以看出变力做功的公式可以帮助我们计算力与位置之间的关系,并求解相应的功。
需要注意的是,在实际应用中,变力做功的计算通常需要使用积分等高级数学工具,因此对于复杂的力和位置关系,需要运用数学知识来求解。
但无论如何,变力做功的公式为我们理解力与位置之间的关系提供了重要的工具。
第26点求解变力做功的“五法”1.变力的功=力×路程当力的大小不变而方向始终与运动方向相同或相反时,这类力所做的功等于力和路程的乘积,如滑动摩擦力、空气阻力等做的功.2.变力的功=平均力×x cos α当力的方向不变,大小随位移线性变化时,可先求出力的平均值F=F1+F22,再由W=F x cos α计算.3.变力的功=功率×时间当变力的功率P一定时,可用W=Pt求功.4.变力的功=“面积”作出变力F随位移x变化的图像,图像与横轴所夹的“面积”即为变力做的功,如图1中阴影部分所示.图15.变力的功=动能变化-其他恒力所做的功当物体受到变力(也可只受变力)及其他恒力作用引起物体的动能发生变化时,根据动能定理知,变力的功等于动能变化减去其他恒力所做的功.对点例题如图2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨.假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图2解题指导因力F的大小恒定,且始终与运动方向相同,故F的功等于力乘以路程,即W=F·2πL=2πFL答案2πFL一质量为2 kg的物体,在水平恒定拉力的作用下以某一速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图3中给出了拉力随位移变化的关系图像.已知重力加速度g=10 m/s2.根据以上信息能精确得出或估算得出的物理量有()图3A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体匀速运动时的速度D.物体运动的时间答案ABC解析物体做匀速运动时,受力平衡,则f=F=7 N;再由滑动摩擦力公式可求得物体与水平面间的动摩擦因数;故A正确;4 m后物体做减速运动,图像与坐标轴围成的面积表示拉力做的功,则由图像中减速过程包括的方格数可知拉力所做的功;再由摩擦力与位移的乘积求出摩擦力的功;则可求得总功;故B正确;已求出物体合外力所做的功;则由动能定理可求得物体开始时做匀速运动时的速度;故C正确;由于不知道具体的运动情况,无法求出减速运动的时间,故D错误.。
高中物理中的变力做功
功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FLcosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用。
在新课标中,更体现学生在知识与技能、过程与方法、情感态度与价值观三方面的全面发展。
下面对变力做功问题进行归纳总结如下:
1、等效替代法
[要点]:用恒力替代变力
例1:人在A点拉着绳通过一定滑轮吊起质量m=50 kg的物体,如图,开始绳与水平方向夹角为60°,当人匀速提起重物由A点沿水平方向运动L=2 m到B 点,此时绳与水平方向成30°角,求人对绳的拉力做了多少功?(g取10 m/s2)
2、微元法
[要点]:当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例2:某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:
例4:用铁锤将一铁钉钉入木块,设木块对铁钉的阻力与铁钉进入木板内的深度成正比.在铁锤击第一次后,把铁钉击入木块内1cm.则击打第二次后,能击入多少深度?(设铁锤每次做功相等)
[解析] 设f=kx,在f—x图像中,图像与横轴围成的面积表示f所做的功。
6、用机械能守恒定律
[要点]:如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。
如果求弹力这个变力做的功,可用机械能守恒定律来求解。
例6:如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s 的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。
(g取10 m/s2)
8.功率法
[要点] 用W=Pt,求恒定功率下变力的功.(如汽车以恒定的率启动时牵引力
的功)
例8:汽车以恒定的功率P启动,达到最大速度Vm用时间t,求此过程中阻力所做的功。
[解析] 汽车启动中,有牵引力和阻力做功,由P=F牵V,P一定,F牵随速度V而变化,阻力f往往随速度V而变化,是变力做功,利用功能关系。