chapter2非参数统计
- 格式:ppt
- 大小:1.20 MB
- 文档页数:50
非参数统计方法介绍非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是直接利用样本数据进行统计推断。
非参数统计方法的优势在于适用范围广,可以处理各种类型的数据,不受总体分布形态的限制。
本文将介绍非参数统计方法的基本原理和常用的方法。
一、非参数统计方法的基本原理非参数统计方法是基于样本数据进行统计推断的方法,它不对总体分布形态做出任何假设。
非参数统计方法的基本原理可以概括为以下几点:1. 样本数据的分布形态未知:非参数统计方法不对总体分布形态做出任何假设,因此适用于各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。
2. 依赖于样本数据的排序:非参数统计方法通常基于样本数据的排序进行推断,而不是依赖于总体分布的参数估计。
3. 适用范围广:非参数统计方法不受总体分布形态的限制,适用于各种类型的数据和各种统计问题,如参数估计、假设检验和置信区间等。
二、常用的非参数统计方法非参数统计方法包括了许多不同的方法,下面将介绍其中常用的几种方法。
1. 秩和检验:秩和检验是一种用于比较两个独立样本的非参数方法。
它基于样本数据的排序,通过比较两个样本的秩和来判断两个样本是否来自于同一总体。
2. 秩相关系数:秩相关系数是一种用于衡量两个变量之间相关性的非参数方法。
它基于样本数据的排序,通过计算秩次之间的差异来衡量两个变量之间的相关性。
3. Kruskal-Wallis检验:Kruskal-Wallis检验是一种用于比较多个独立样本的非参数方法。
它基于样本数据的排序,通过比较各个样本的秩和来判断多个样本是否来自于同一总体。
4. Wilcoxon符号秩检验:Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数方法。
它基于样本数据的排序,通过比较两个样本的秩和来判断两个样本是否来自于同一总体。
5. Mann-Whitney U检验:Mann-Whitney U检验是一种用于比较两个独立样本的非参数方法。
非参数统计讲义(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪 论本章主要内容: 1.非参数方法介绍2.预备知识第一节 非参数方法介绍一. 非参数方法的概念和实例复习参数方法定义:设总体X 的分布函数的形式是已知的,而未知的仅仅是分布函数具体的参数值,用样本对这些未知参数进行估计或进行某种形式的假设检验,这类推断方法称为参数方法。
先来看两个实例。
例 供应商供应的产品是否合格某工厂产品的零件由某个供应商供应。
合格零件标准长度为(±)cm 。
这也就是说合格零件长度的中心位置为,允许误差界为,即长度在-之间的零件是合格的。
为评估近年来供应的零件是否合格,随机抽查了n=100个零件,它们的长度数据X 见第一章附表。
解答:根据我们已学过的参数统计的方法,如何根据数据来判断这批零件合格否 用参数数据分析方法,在参数统计中,运用得最多的是正态分布,所以考虑假设供应商供应的零件长度X 服从正态分布,即X ~),(2σμN其中两个参数均未知,但可用样本均值估计μ,样本方差估计2σ。
由已知的数据计算可得:零件的平均长度,即样本均值为x =,样本标准差为s=。
则零件合格的可能性近似等于)/)4.8(()/)6.8(()6.84.8(σμσμ-Φ--Φ=≤≤X P)1047.0/)4958.84.8(()1047.0/)9458.86.8((-Φ--Φ≈%66≈这个说明:约有三分之一的零件不合格,该工厂需要换另一个供销商了。
但这个结论与实际数据符不符合呢这是我们要思考的问题。
我们可以对数据做一个描述性分析,先对这100个样本数据做一个频率分布。
观察到:在这100个零件中有91个零件的长度在~之间,所以零件合格的比例为91%,超过66%很多!统计分析的结论与数据不吻合的!这是什么原因呢我们可以作出数据的直方图来分析数据的分布情况。
由图知,该数据的总体不是近似服从正态分布的!所以我们对于数据的总体分布的假设错了!问题就出在假设总体是正态分布上!继续看直方图,能否很容易就观察出来它大概是什么分布呢答案是不易看出,所以试图先确定数据的分布函数,再利用参数的方法来分析是不太容易的。
非参数统计学讲义第二章 单样本模型 §1 符号检验和有关的置信区间在有了一个样本n X X ,,1 之后,很自然地想要知道它所代表的总体的“中心”在哪里.例如,在对人们的收入进行了抽样之后,就自然要涉及“人均收入”和“中间收入”等概念.这就与统计中的对总体的均值(mean),中位数(median)和众数(mode)等位置参数的推断有关。
例如,在知道总体是正态分布时,要检验其均值是否为μ;一个传统的基于正态理论的典型方法是t 检验.它的检验统计量定义为ns X t /μ-=这里X 为样本均值,而211)(X X n S -∑-=为样本标准差。
t —检验的统计量在零假设下有n —1个自由度的t —分布。
检验统计量是用样本标准差s 代替了有标准正态分布的检验统计量的总体标准差后而产生的在大样本时,二者几乎相等。
t —检验也许是世界上用得最广泛的检验之一。
但是,t —检验并不稳健,在不知总体分布时,特别是小样本时,应用t —检验就可能有风险。
这时就要考虑使用非参数方法。
对于本章所要介绍的数据趋势或随机性检验,就不存在简单的参数方法.非参数方法总是简单实用的。
本章所介绍的一些检验有代表性,因此这里的讨论将比其它章节更为仔细.一旦熟悉了非参数方法的一些基本思路,后面的内容就很容易理解了.一、问题的提出【例2-1】联合国人员在世界上66个大城市生活花费指数(以纽约市1962年12为100)按自小至大的次序排列如下(这里北京的指数为99):表2-1 生活花费指数数据66 75 78 80 81 81 82 83 83 83 83 84 85 85 86 86 86 86 87 87 88 88 88 88 88 89 89 89 89 90 90 91 91 91 91 92 93 93 96 96 96 97 99 100 101 102 103 103 104 104 104 105 106 109 109 110110110111113115116117118155192在例子中,人们可能会问:①总体的平均(或者中间)水平1是多少?②北京是在该水平之上还是之下?可以假定这个样本是从世界许多大城市中随机抽样而得的所有大城市的指数组成总体.可能出现的问题是:这个总体的平均(或者中间)水平是多少?北京是在该水平之上还是之下?这里的平均(或中间)水平是一个位置参数。