非参数统计第二章
- 格式:ppt
- 大小:3.08 MB
- 文档页数:42
非参数统计Non-parametricStatistics一、课程基本信息学时:48(含实验8学时)学分:3考核方式:考试,平时成绩占总成绩30%。
中文简介:非参数统计为有效地分析试验设计及其实际问题中所获得的数据提供了丰富的统计工具。
本课程从问题背景与动机、方法引进、理论基础、计算机实现、应用实例等诸多方面介绍了非参数统计方法,其内容包括:基于二项分布的检验、列联表、秩检验、Ko1mogorov-Smirnov 型统计量等。
本课程在强调实用性的同时,突出了应用方法与理论的结合。
在人才培养体系中,该课程属于选修课程,但建议每个统计学专业的学生必须掌握若干种非参数统计方法,以其作为其他重要统计方法的补充。
特别是针对名义数据分析及有序数据分析时相当有用。
二、教学目的与要求非参数统计是研究随机现象存在的统计规律的学科,其在经济、工农业生产和科学技术等领域有广泛的应用,是一门应用性很强的一门课程。
本课程(1)使学生掌握非参数理论的基本原理和方法,重点掌握单样本,多样本的位置检验和尺度检验,以及相关检验和分布检验。
注意与参数统计的区别;(2)结合实际例子,运用非参数理论,提高学生运用该工具解决实际问题的能力。
(3)使学生进一步掌握具体与抽象、偶然与必然、特殊与一般等辨证关系,培养学生辨证唯物主义观点。
三、教学方法与手段教学中主要采用课堂教学的方法,当中穿插大量的案例,同时预留课堂讨论与练习的时间让学生进行实际的操作。
本课程同时设立计算机上机课程,由老师自编实验指导书详细指导学生进行上机实践,强调动脑与动手相结合,理论与实践相结合。
o五、推荐教材和教学参考资源教材:非参数统计:基于R语言案例分析,柳向东编,暨南大学出版社,2010年12月(第1版)参考资料:1)非参数统计,王星编著,北京:中国人民大学出版社,2(X)5年1月(第一版)2)非参数统计方法,吴喜之等,北京:高等教育出版社,1996年(第1版)3)孙山泽.非参数统计讲义.北京:北京大学出版社,2000。
非参数统计 第 次作业第二章习题 2.1 解:(1)0110001000H :h H :h μ≥↔μ<建立的猜想应该与样本表现一致。
换句话说,正是样本表现使我们对总体的均值产生怀疑,进而才有了假设检验。
因此,0H 是我们就与样本想要推翻的假设,所以才要检验。
(2)由上一问,这样的假设脱离样本,样本呈现出落后于旧过程的情形,而非要用一种优于旧过程的假设,这样的假设是毫无意义的,也并不会带来好的结果。
2.2 解:(1)有问题。
假设检验在原假设条件成立下,得到拒绝域1645x .>,意思是拒绝0θ=,接受0θ≠。
而1000θ=只是其中的一种情况,故不能接受1000θ=。
改进方法:可直接提出假设对均值为1000进行检验。
即0110001000H :H :θ=↔θ≠(2)不合理。
样本2的样本量太小,不具备代表性,用其进行假设检验风险太大。
改进方法:若样本来自同一总体,独立观察,且需要对总体样本均值做出判断,可将两样本合并后再进行假设检验;若样本来自两个总体,需对两总体的均值做出比较,可取(12x x ---)作为检验统计量进行检验。
(3)t -=x -为样本均值,μ为总体均值,s 为样本标准差 01p Pr(t(n )t )=-≤,其中0t -=p 值是拒绝原假设0H 的最小显著水平。
若p α≥,则拒绝0H ;反之,接受0H(4)对总体均值进行双侧检验:00012112211111-H :|t(n )t (n )|(x t (n t (n α---αα--μ=μ↔μ≠μ⎧⎫->-⎨⎬⎩⎭α--+-拒绝域:故,置信区间为:(5)双侧检验:00101211221122''H :H :|u |u u u [x u ,x u α--αα----αα--μ=μ↔μ≠μ⎧⎫≥⎨⎬⎩⎭≤≤-+拒绝域:故置信区间为:- 当样本量很大时,依然可以用上法:222212211111_n i i _s (x x )[n(x (x ))]n n n [(x (x ))]n --=-=-=---=--∑由矩估计的相合性可知,2_x 是2E(x )的相合估计,2(x )-是2E(x )的相合估计 故2s 是2δ的相合估计。
非参数统计学讲义第二章 单样本模型 §1 符号检验和有关的置信区间在有了一个样本n X X ,,1 之后,很自然地想要知道它所代表的总体的“中心”在哪里.例如,在对人们的收入进行了抽样之后,就自然要涉及“人均收入”和“中间收入”等概念.这就与统计中的对总体的均值(mean),中位数(median)和众数(mode)等位置参数的推断有关。
例如,在知道总体是正态分布时,要检验其均值是否为μ;一个传统的基于正态理论的典型方法是t 检验.它的检验统计量定义为ns X t /μ-=这里X 为样本均值,而211)(X X n S -∑-=为样本标准差。
t —检验的统计量在零假设下有n —1个自由度的t —分布。
检验统计量是用样本标准差s 代替了有标准正态分布的检验统计量的总体标准差后而产生的在大样本时,二者几乎相等。
t —检验也许是世界上用得最广泛的检验之一。
但是,t —检验并不稳健,在不知总体分布时,特别是小样本时,应用t —检验就可能有风险。
这时就要考虑使用非参数方法。
对于本章所要介绍的数据趋势或随机性检验,就不存在简单的参数方法.非参数方法总是简单实用的。
本章所介绍的一些检验有代表性,因此这里的讨论将比其它章节更为仔细.一旦熟悉了非参数方法的一些基本思路,后面的内容就很容易理解了.一、问题的提出【例2-1】联合国人员在世界上66个大城市生活花费指数(以纽约市1962年12为100)按自小至大的次序排列如下(这里北京的指数为99):表2-1 生活花费指数数据66 75 78 80 81 81 82 83 83 83 83 84 85 85 86 86 86 86 87 87 88 88 88 88 88 89 89 89 89 90 90 91 91 91 91 92 93 93 96 96 96 97 99 100 101 102 103 103 104 104 104 105 106 109 109 110110110111113115116117118155192在例子中,人们可能会问:①总体的平均(或者中间)水平1是多少?②北京是在该水平之上还是之下?可以假定这个样本是从世界许多大城市中随机抽样而得的所有大城市的指数组成总体.可能出现的问题是:这个总体的平均(或者中间)水平是多少?北京是在该水平之上还是之下?这里的平均(或中间)水平是一个位置参数。
《非参数统计》课程教学大纲课程代码:090531007课程英文名称:Non-parametric Statistics课程总学时:40 讲课:32 实验:8 上机:0适用专业:应用统计学大纲编写(修订)时间:2017.6一、大纲使用说明(一)课程的地位及教学目标《非参数统计》是应用统计学专业的一门专业基础课,是统计学的一个重要分支。
课程主要研究非参数统计的基本概念、基本方法和基本理论。
本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,着重培养学生的统计思想、统计推断和决策能力。
通过本课程的学习,学生将达到以下要求:1.掌握非参数统计方法原理、方法,具有统计分析问题的能力;2.具有根据具体情况正确选用非参数统计方法,正确运用非参数统计方法处理实际数据资料的能力;3.具有运用统计软件分析问题,对计算结果给出合理解释,从而作出科学的定论的能力;4.了解非参数统计的新发展。
(二)知识、能力及技能方面的基本要求1.基本知识:掌握符号检验、Wilcoxon符号秩检验、Cox-Stuart趋势检验、游程检验、Brown-Mood中位数检验、Wilcoxon秩和检验、Kruskal-Wallis检验、Jonckheere-Terpstra检验、Friedman检验、Page检验、Siegel-Tukey检验、Mood检验、Ansari-Bradley检验、Fligner-Killeen检验等非参数统计方法。
2.基本理论和方法:掌握单样本模型、两样本位置模型、多样本数据模型中的位置参数非参数统计检验方法,掌握检验尺度参数是否相等的各种非参数方法,掌握各种回归的方法,掌握分布检验的各种方法,要求能在真实案例中应用相应的方法。
3.基本技能:掌握非参数统计方法的计算机实现。
(三)实施说明1. 本大纲主要依据应用统计学专业2017版教学计划、应用统计学专业建设和特色发展规划和沈阳理工大学编写本科教学大纲的有关规定并根据我校实际情况进行编写。
第二章描述性统计描述性统计是在对产生数据的总体的分布不作任何假设的情况下,整理数据、显示数据和分析数据,将数据中有用的信息提取出来的统计方法。
常用的描述性统计方法有表格法、图形法和数值方法。
§2.1表格法和图形法表格法主要有列频数分布表和频率分布表。
看下面的例子。
例2.1某电子公司测试新灯丝的燃烧寿命,表2.1列出了200个灯泡样本的可使用小时数。
表2.1 灯丝寿命数据107 73 68 97 76 79 94 59 98 57 73 81 54 65 71 80 84 88 62 6179 98 63 65 66 62 79 86 68 74 61 82 65 98 63 71 62 116 65 8864 79 78 79 77 86 89 76 74 85 73 80 68 78 89 72 58 69 82 7292 78 88 77 103 88 63 68 88 81 64 73 75 90 62 89 71 71 74 7074 70 85 61 65 81 75 62 94 71 85 84 83 63 92 68 81 62 79 8393 61 65 62 92 65 64 66 83 70 70 81 77 72 84 67 59 58 73 8378 66 66 94 77 63 66 75 68 76 73 76 90 78 71 101 78 43 59 6761 71 77 91 96 75 64 76 72 77 74 65 82 86 79 74 66 86 96 8981 71 85 99 59 92 94 62 68 72 77 60 87 84 75 77 51 45 63 10285 67 87 80 84 93 69 76 89 75 59 77 83 68 72 67 92 89 82 96这200个数杂乱无章,不经过整理难以发现其内在的规律。
乘机服务机上服务到达机场服务
列1 列1 列1
平均79.78 平均54.46 平均58.48 标准误差 1.174661 标准误差 2.08556 标准误差 2.262605 中位数82 中位数55.5 中位数58.5 众数72 众数60 众数52 标准差8.306108 标准差14.74713 标准差15.99903 方差68.99143 方差217.478 方差255.969 峰度-1.05913 峰度0.083147 峰度0.41167 偏度-0.16402 偏度0.264118 偏度-0.26232 区域32 区域65 区域76 最小值63 最小值25 最小值16 最大值95 最大值90 最大值92 求和3989 求和2723 求和2924 观测数50 观测数50 观测数50 最大(1) 95 最大(1) 90 最大(1) 92 最小(1) 63 最小(1) 25 最小(1) 16
置信度(95.0%) 2.36057 置信度(95.0%) 4.191089 置信度
(95.0%) 4.546874
由上表知,表一的平均数最大,标准误差最小,中位数最大,方差最小,等等,所以乘客对乘机服务的满意度最高。
非参数统计目录⏹第一章绪论⏹第二章S-Plus基础⏹第三章单一样本的推断问题⏹第四章两样本位置和尺度检验⏹第五章多总体的统计检验⏹第六章分类数据的关联分析⏹第七章秩相关分析和秩回归第一章绪论主要内容1. 统计的实践2. 非参数统计方法简介3. 参数统计过程与非参数统计的比较4. 非参数统计的历史5. 必要的准备知识1. 统计的实践我们周围的世界⏹符号和数据就是整个世界。
⏹数据繁衍,信息匮乏:观察数据激增,设计数据细分。
⏹数据的复杂性和不确定性的特点更为突出。
⏹数据分析方法和手段不足。
统计的方法论⏹就方法论而言,统计分析主要解决两方面的问题:–寻找数据内部差异中共同的特征。
–寻找数据之间本质的差异。
⏹统计分析的目标是从数据中发现比数据本身更为有用的知识2. 非参数统计方法简介参数方法⏹定义:样本被视为从分布族的某个参数族抽取出来的总体的代表,而未知的仅仅是总体分布具体的参数值,推断问题就转化为对分布族的若干个未知参数的估计问题,用样本对这些参数做出估计或者进行某种形式的假设检验,这类推断方法称为参数方法。
⏹比如:(1)研究保险公司的索赔请求数时,可能假定索赔请求数来自泊松分布P(a);(2)研究化肥对农作物产量的影响效果时,平均意义之下,每测量单元(可能是)产量服从正态分布N(a,b).一个典型的参数检验过程1. 总体参数Example: Population Mean2. 假定数据的形态为Whole Numbers or FractionsExample: Height in Inches (72, 60.5, 54.7) 3. 有很强的假定Example: 正态分布4. 例子: Z Test, t Test, 2Test一个例子:对两组学生进行语法测试,如何比较两组学生的成绩是否存在差异?RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group1F r e q u e n c y6543210Std. Dev = 6.28 M ean = 13.0N = 12.00原始数据秩2530293424251332243032379.514.012.021.07.59.52.017.57.514.017.524.04433228473140303335182135282226.019.55.51.027.016.025.014.019.522.53.04.022.511.05.5RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group2F r e q u e n c y6543210Std. Dev = 9.17 Mean = 14.8N = 15.00非参数检验过程⏹1.不涉及总体的分布–Example: Probability Distributions, Independence⏹2. 数据的形态各异–定量数据–定序数据–Example: Good-Better-Best–名义数据–Example: Male-Female⏹3.例子: Wilcoxon Rank Sum Test/Run TestF, F, F, F, F, F, F, F, M, M, M, M, M, M, MF, M, F, M, F, M, F, M, F, M, F, M, F, M, F3. 参数统计与非参数统计比较非参数检验的优点⏹对总体假定较少,有广泛的适用性,结果稳定性较好。
遵义师范学院课程教学大纲非参数统计教学大纲(试行)课程编号:280020 适用专业:统计学学时数:64 学分数: 4执笔人:黄建文审核人:系别:数学教研室:统计学教研室编印日期:二〇一五年七月课程名称:非参数统计课程编码:学分:4总学时:64课堂教学学时:64实践学时:适用专业:统计学先修课程:高等数学、线性代数、概率论、数理统计一、课程的性质与目标:(一)该课程的性质本课程属专业方向选修课程。
非参数统计形成于二十世纪四十年代,是与参数统计相比较而存在的统计学一个年轻、活跃而前沿的分支,含有丰富的统计思想并在实践中有着广泛的应用。
非参数统计方法不依赖于总体分布及其参数,适用于多种类型的数据,进行统计推断时仅需要一些非常一般性的假设,因而具有良好的稳健型,在总体分布未知的情况下往往比参数统计方法有效。
(二)该课程的教学目标本课程的教学目的是使学生了解非参数统计在推断统计体系中日益重要的作用,理解非参数统计方法和参数统计方法的区别。
要求学生掌握本课程的基本知识、基本概念、基本原理和基本方法,能应用非参数统计方法解决一些简单的实际问题;注重学生统计思维能力和实践能力的培养,进一步培养学生重视原始资料的完整性与准确性、对数据处理持严肃认真态度的专业素质。
二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。
三、教学内容与要求第一章引言【教学目标】通过本章学习,使学生清楚非参数统计的研究对象,了解非参数统计的历史,明白非参数统计方法和参数统计方法的区别,认识学习非参数统计方法的必要性,了解非参数统计的一些基本概念与基本工具;通过对初等推断统计的简单回顾,要求学生提炼并把握推断统计思想的实质,为后续章节学习非参数统计的分析技巧和主要思想打下基础。
【教学内容和要求】主要教学内容:非参数统计研究内容;非参数统计小史;初等推断统计回顾;非参数统计基本概念。
教学重点与难点:教学重点是通过与参数统计异同的比较,介绍非参数统计的研究内容与研究方法;教学难点是对检验的相对效率、秩检验统计量、U统计量等非参数统计基本概念的理解。