第二章非参数统计分析
- 格式:ppt
- 大小:582.50 KB
- 文档页数:70
统计学中的非参数统计分析统计学作为一门研究数据分析和推断的学科,涉及到各种统计方法和技术。
其中,非参数统计分析是一种常见且重要的方法,它不依赖于数据的特定分布假设,而是利用数据本身的特征进行分析和推断。
本文将介绍非参数统计分析的基本概念、应用场景和常用方法。
非参数统计分析是相对于参数统计分析而言的。
参数统计分析通常需要对数据的分布做出假设,如正态分布、指数分布等,并利用参数估计方法来推断总体参数。
然而,在实际应用中,我们往往无法确定数据的真实分布,或者分布假设不成立。
这时,非参数统计分析就成为一种有力的工具。
非参数统计分析的一个重要应用是在样本比较中。
假设我们想比较两组样本的均值是否有显著差异,但无法确定数据是否符合正态分布。
这时,可以使用非参数的Wilcoxon秩和检验来进行推断。
该方法将两组样本的观测值按大小排序,并计算秩次和。
通过比较秩次和的大小,可以判断两组样本的均值是否有显著差异。
除了样本比较,非参数统计分析还可以用于回归分析。
在传统的线性回归中,我们通常假设自变量和因变量之间的关系是线性的,并利用最小二乘法来估计回归系数。
然而,在实际应用中,变量之间的关系可能是非线性的,或者无法确定具体的函数形式。
这时,非参数的局部回归方法就可以派上用场。
该方法通过在每个数据点附近拟合局部线性模型,来估计变量之间的关系。
这种方法不依赖于具体的函数形式,能够更好地适应数据的特点。
在实际应用中,非参数统计分析还有许多其他的方法,如Kolmogorov-Smirnov 检验、Mann-Whitney U检验等。
这些方法都不依赖于数据的分布假设,能够更加灵活地适应不同的数据类型和场景。
尽管非参数统计分析在某些方面具有优势,但也存在一些限制。
首先,由于不依赖于分布假设,非参数方法通常需要更多的样本来获得可靠的推断结果。
其次,非参数方法往往比参数方法计算量更大,需要更多的计算资源和时间。
此外,非参数方法对异常值和缺失值的鲁棒性较差,需要进行适当的数据处理。
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
经济统计学中的非参数统计方法与分析经济统计学是研究经济现象的统计学科,它运用统计学的方法和技术,对经济数据进行收集、整理、分析和解释,从而揭示经济规律和发展趋势。
非参数统计方法是经济统计学中的一种重要工具,它与参数统计方法相对应,主要用于处理那些无法用参数模型刻画的经济现象。
本文将介绍非参数统计方法的基本原理和应用,并探讨其在经济统计学中的意义和局限。
一、非参数统计方法的基本原理非参数统计方法是一种不依赖于总体分布形态的统计分析方法。
与参数统计方法相比,非参数统计方法不对总体的概率分布进行任何假设,而是通过对样本数据的排序、秩次变换等非参数化处理,来进行统计推断。
其基本原理是利用样本数据的内在结构和顺序信息,从而获得总体的分布特征和统计性质。
二、非参数统计方法的应用领域非参数统计方法在经济统计学中有广泛的应用。
首先,它可以用于经济数据的描述和总结。
例如,通过计算样本数据的中位数、分位数等非参数统计量,可以更准确地描述和解释经济现象的分布特征和变异程度。
其次,非参数统计方法可以用于经济数据的比较和推断。
例如,通过非参数的秩次检验方法,可以判断两个总体是否存在显著差异,从而进行经济政策的评估和决策。
此外,非参数统计方法还可以用于经济模型的估计和验证。
例如,通过非参数的核密度估计方法,可以对经济模型的参数进行非线性估计和模型检验,从而提高经济模型的拟合度和预测能力。
三、非参数统计方法的意义和局限非参数统计方法在经济统计学中具有重要的意义和价值。
首先,它能够更好地应对数据的非正态性和异方差性等问题,从而提高统计推断的效果和准确性。
其次,非参数统计方法能够更好地适应不完全信息和有限样本的情况,从而减少模型假设和参数估计的不确定性。
然而,非参数统计方法也存在一些局限性。
首先,由于非参数统计方法不假设总体的分布形态,因此通常需要更大的样本量才能获得稳健的统计推断结果。
其次,非参数统计方法在处理高维数据和复杂模型时,计算复杂度较高,需要更多的计算资源和时间。
非参数统计分析是指不需要任何假设的情况下,对数据进行分析和处理的方法。
相对于参数统计分析,更加灵活和适用于更广泛的数据集。
在中,我们通常使用基于排列和重抽样方法的统计分析,这些方法在处理离散和连续的数据集时都十分有效。
如何进行1. 非参数检验非参数检验方法不要求数据满足特定的分布,通常分为两类:①秩和检验秩和检验是比较两组数据的中位数是否相等。
对于小样本来说,一般采用Wilcoxon签名检验。
而对于大样本,通常会使用Mann Whitney U检验。
②秩相关检验秩相关检验是比较两个或多个变量的相关性关系。
这种类型的检验最常用的是Spearman秩相关系数和Kendall Tau秩相关测试。
2. 非参数估计器由于非参数统计方法不依赖于任何先验假设,因此非参数估计器在数据少或均值和方差无法准确估计的情况下较为常用。
在非参数估计器中,常用的方法有:①核密度估计核密度估计通常是数据分析和可视化的首选。
它能够获得不同分布的概率密度函数的非参数估计器。
②基于距离的方法基于距离的方法通常使用K近邻算法或半径最邻近算法来估计密度。
这种方法特别适合于计算高维数据的密度估计。
3. 非参数回归非参数回归是一种灵活的模型,他用于数据挖掘过程中的最复杂部分。
与标准回归技术不同,非参数回归方法不需要数据满足任何特定分布。
在非参数回归中,主要的方法有:①核回归在核密度估计和非参数回归中使用的是相同的核函数。
相对于线性回归方法,核回归更加灵活,适用于非线性分布的数据。
②局部回归局部回归的本质是计算小范围或子集内的平均值,并在这些平均值上拟合局部模型。
这种方法特别适用于非线性回归和数据样本集的大小不规则的情况。
非参数统计优势非参数统计方法的最大优势在于能够在没有特定假设下应用于任何样本集,这使得无需预先了解数据的分布和性质。
此外,非参数统计方法还有其他的优势,如:1. 不受异常数据的影响:统计方法通常受异常数据的影响较大,但非参数统计方法不会使结果发生显著的变化。
非参数统计目录⏹第一章绪论⏹第二章S-Plus基础⏹第三章单一样本的推断问题⏹第四章两样本位置和尺度检验⏹第五章多总体的统计检验⏹第六章分类数据的关联分析⏹第七章秩相关分析和秩回归第一章绪论主要内容1. 统计的实践2. 非参数统计方法简介3. 参数统计过程与非参数统计的比较4. 非参数统计的历史5. 必要的准备知识1. 统计的实践我们周围的世界⏹符号和数据就是整个世界。
⏹数据繁衍,信息匮乏:观察数据激增,设计数据细分。
⏹数据的复杂性和不确定性的特点更为突出。
⏹数据分析方法和手段不足。
统计的方法论⏹就方法论而言,统计分析主要解决两方面的问题:–寻找数据内部差异中共同的特征。
–寻找数据之间本质的差异。
⏹统计分析的目标是从数据中发现比数据本身更为有用的知识2. 非参数统计方法简介参数方法⏹定义:样本被视为从分布族的某个参数族抽取出来的总体的代表,而未知的仅仅是总体分布具体的参数值,推断问题就转化为对分布族的若干个未知参数的估计问题,用样本对这些参数做出估计或者进行某种形式的假设检验,这类推断方法称为参数方法。
⏹比如:(1)研究保险公司的索赔请求数时,可能假定索赔请求数来自泊松分布P(a);(2)研究化肥对农作物产量的影响效果时,平均意义之下,每测量单元(可能是)产量服从正态分布N(a,b).一个典型的参数检验过程1. 总体参数Example: Population Mean2. 假定数据的形态为Whole Numbers or FractionsExample: Height in Inches (72, 60.5, 54.7) 3. 有很强的假定Example: 正态分布4. 例子: Z Test, t Test, 2Test一个例子:对两组学生进行语法测试,如何比较两组学生的成绩是否存在差异?RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group1F r e q u e n c y6543210Std. Dev = 6.28 M ean = 13.0N = 12.00原始数据秩2530293424251332243032379.514.012.021.07.59.52.017.57.514.017.524.04433228473140303335182135282226.019.55.51.027.016.025.014.019.522.53.04.022.511.05.5RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group2F r e q u e n c y6543210Std. Dev = 9.17 Mean = 14.8N = 15.00非参数检验过程⏹1.不涉及总体的分布–Example: Probability Distributions, Independence⏹2. 数据的形态各异–定量数据–定序数据–Example: Good-Better-Best–名义数据–Example: Male-Female⏹3.例子: Wilcoxon Rank Sum Test/Run TestF, F, F, F, F, F, F, F, M, M, M, M, M, M, MF, M, F, M, F, M, F, M, F, M, F, M, F, M, F3. 参数统计与非参数统计比较非参数检验的优点⏹对总体假定较少,有广泛的适用性,结果稳定性较好。