最近邻分类算法分析
- 格式:ppt
- 大小:263.50 KB
- 文档页数:14
最近邻算法
最近邻算法(k-Nearest Neighbor Algorithm,KNN)是一种基于实例的学习或懒惰学习算法,它允许计算机系统“学习”在给定的训练集上的输入实例的属性与相应的类标号之间的关系,从而实现对新的数据实例进行分类。
KNN算法是一种被称作非参数学习法的监督学习方法,该方法不需要事先对数据进行定量化和标准化处理,也不涉及参数估计,大大简化了模型的构建过程。
KNN算法的基本思想十分简单:给定一个新的实例,将其与训练样本中的所有数据进行比较,然后依据一定的距离度量准则将新的实例分配给与其最为相似的那些训练样本所对应的类别。
KNN算法的实现原理很容易理解,但是在实际应用中,它却是一种高效的分类算法。
该算法能够从无序的、高维度的数据集中提取出有用的类别信息,使用者只需少量参数调节以及短暂的训练过程便可得到一个完整的建模。
KNN算法是一种基于实例的学习,主要由两步组成:第一步是计算两个实例之间的“距离”,第二步是根据距离选取“k”个最邻近的实例,并将其类标号合并以形成最终的预测类标号。
当新的数据实例到达时,KNN算法可以计算与该实例的每一个已知实例的距离,选择与该实例距离最近的K个实例来投票确定该新实例的类别标号。
KNN算法具有训练速度快、容易理解、可解释性高、支持多样性等优点,因此近年来得到了越来越多的应用。
然而,KNN算法也存在一些缺点,如计算复杂度高、空间开销不稳定以及容易受到噪声影响等。
1.简述k最近邻算法的原理、算法流程以及优缺点一、什么是K近邻算法k近邻算法又称knn算法、最近邻算法,是一种用于分类和回归的非参数统计方法。
在这两种情况下,输入包含特征空间中的k个最接近的训练样本,这个k可以由你自己进行设置。
在knn分类中,输出是一个分类族群。
一个对象的分类是由其邻居的“多数表决”确定的,k个最近邻居(k为正整数,通常较小),所谓的多数表决指的是,在k个最近邻中,取与输入的类别相同最多的类别,作为输入的输出类别。
简而言之,k近邻算法采用测量不同特征值之间的距离方法进行分类。
knn算法还可以运用在回归预测中,这里的运用主要是指分类。
二、k近邻算法的优缺点和运用范围优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用范围:数值型和标称型、如手写数字的分类等。
三、k近邻算法的工作原理假定存在一个样本数据集合,并且样本集中的数据每个都存在标签,也就是说,我们知道每一个样本数据和标签的对应关系。
输入一个需要分类的标签,判断输入的数据属于那个标签,我们提取出输入数据的特征与样本集的特征进行比较,然后通过算法计算出与输入数据最相似的k个样本,取k个样本中,出现次数最多的标签,作为输入数据的标签。
四、k近邻算法的一般流程(1)收集数据:可以使用任何方法,可以去一些数据集的网站进行下载数据。
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式(3)分析数据:可以使用任何方法(4)训练算法:此步骤不适用于k近邻算法(5)测试算法:计算错误率(6)使用算法:首先需要输入样本数据和结构化的输出结构(统一数据格式),然后运行k近邻算法判定输入数据属于哪一种类别。
五、k近邻算法的实现前言:在使用python实现k近邻算法的时候,需要使用到Numpy科学计算包。
如果想要在python中使用它,可以按照anaconda,这里包含了需要python需要经常使用到的科学计算库,如何安装。
最近邻算法(KNN)最近邻算法:1.什么是最近邻是什么? kNN算法全程是k-最近邻算法(k-Nearest Neighbor) kNN算法的核⼼思想是如果⼀个样本在特征空间中的k个最相邻的样本中的⼤多数数以⼀个类型别,则该样本也属于这个类别,并具有该类别上样本的特征。
该⽅法在确定分类决策上,只依据最近邻的⼀个或者⼏个样本的类别来决定待分样本所属的类别。
下⾯举例说明:即使不知道未知电影属于哪个类型,我们也可以通过某种⽅式计算,如下图现在,我们得到了样本集中与未知电影的距离,按照距离的递增顺序,可以找到k个距离最近的电影,假设k=3,则三个最靠近的电影是he is not realy into Dudes,Beautiful women, California man , kNN 算法按照距离最近的三部电影类型决定未知电影的类型,这三部都是爱情⽚,所以未知电影的类型也是爱情⽚。
2:kNN算法的⼀般流程step.1---初始化距离为最⼤值step.2---计算未知样本和每个训练样本的距离diststep.3---得到⽬前K个最邻近样本中的最⼤距离maxdiststep.4---如果dist⼩于maxdist, 则将训练样本作为K-最近邻样本step.5---重复步骤2,3,4,直到未知样本和所有训练样本的距离都算完step.6---统计K-最近邻样本中每个类标号出现的次数step.7---出现频率最⼤的类标号最为未知样本的类标号3.距离公式在KNN算法中,通过计算对象间距离作为各个对象之间的⾮相似性指标,避免了对象之间的匹配问题,在这⾥距离⼀般使⽤欧式距离或者曼哈顿距离:对应代码如下# kNN算法全称是k-最近邻算法(K-Nearest Neighbor)from numpy import *import operator# 创建数据函数def createDataSet():""" 创建数据集,array 创建数组array数组内依次是打⽃次数, 接吻次数group⼩组, labels标签"""group = array([[3, 104], [2, 100], [1, 81], [101, 10], [99, 5], [98, 2]])labels = ["爱情⽚", "爱情⽚", "爱情⽚", "动作⽚", "动作⽚", "动作⽚"]return group, labels# 归类函数def classify(inX, dataSet, labels, k):""" 获取维度,inX 待测⽬标的数据,dataSet 样本数据,labels 标签,k 设置⽐较邻近的个数"""dataSetSize = dataSet.shape[0] # 训练数据集数据⾏数print(dataSetSize)print(tile(inX, (dataSetSize, 1)))diffMat = tile(inX, (dataSetSize, 1)) - dataSet # 测试数据,样本之间的数据矩阵偏差print(diffMat)sqDiffMat = diffMat**2 # 平⽅计算,得出每个距离的值print(sqDiffMat)sqDistance = sqDiffMat.sum(axis=1) # 输出每⾏的值print(sqDistance)distances = sqDistance**0.5 # 开⽅计算print(distances)sortedDistances = distances.argsort() # 排序按距离从⼩到⼤输出索引print(sortedDistances)classCount = {}for i in range(k):voteIlabel = labels[sortedDistances[i]] + 1.0 # 按照排序,获取k个对应的标签classCount[voteIlabel] = classCount.get(voteIlabel, 0) # 在字典中添加距离最近的k个对应标签 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]group, labels = createDataSet()res = classify([18, 90], group, labels, 3)print(res)运⾏结果:知识扩展:。
监督分类的方法监督分类的方法监督分类是一种数据分析技术,是一种机器学习算法,它很大程度上是在两类或者多类数据之间划分线性分类模型。
它是将已经标记的训练数据集映射成一个函数,从而预测没有标记的数据集属于哪一类。
监督分类通常有四种方法:一、K最近邻(K-Nearest Neighbors)法K最近邻(KNN)法是最常用的监督分类法之一。
它是一种基于实例的方法,其假设一个新实例的类别可以由它最近的训练实例的类别来决定(即K个最相似的实例),而不是统计分布。
KNN是一种基于投票的方法,即多数表决算法。
KNN的工作机制如下:对于一个未知类别的实例,依次取它距离最近的K个已知类别的实例,确定它的类别。
二、朴素贝叶斯(Naive Bayes)朴素贝叶斯(NB)是一种统计学方法,它假设每个特征属性之间相互独立,这个假设被称为贝叶斯假设或者朴素假设。
它被广泛地用于文档分类,数据挖掘,垃圾邮件过滤,和其他数据相关的应用场景中。
三、决策树(Decision Tree)决策树是一种监督学习的方法,它利用一系列问题来决定某一特定的类别分类的结果。
使用决策树可以将未确定的分类结果拆分成各个层次的问题,每个问题都可以用有限数量的语句来表示,称为决策节点,从而对分类结果进行准确的判断,并且决策树可以根据每个决策节点建立模型,将训练数据集映射成决策树模型,从而得出预测结果。
四、支持向量机(Support Vector Machine)支持向量机(SVM)是一种监督式学习的技术,它可以用来在样本空间中建立一个最佳的超平面,从而将类别完全分开。
它有两个基本概念:核函数和决策函数,其工作原理是:它从原始数据中提取出最佳分类的超平面,再根据支持向量的距离来判断类别,从而使得分类效果尽可能获得最高的精度。
最近邻算法原理一、引言最近邻算法是一种常见的分类算法,其原理简单易懂,应用广泛。
本文将介绍最近邻算法的原理及其实现过程。
二、最近邻算法概述最近邻算法是一种基于实例的学习方法,它通过计算新样本与已有样本之间的距离来确定新样本所属的类别。
具体来说,该算法将所有已知样本划分到不同的类别中,并在新样本到来时,计算该样本与每个已知样本之间的距离,并选择距离最近的k个已知样本作为该新样本所属类别的参考。
其中k值通常为奇数,以避免出现平局。
三、最近邻算法流程1. 收集数据:收集已有分类数据。
2. 准备数据:将数据格式化为适合计算距离的形式。
3. 分析数据:可以使用任何方法。
4. 训练算法:此步骤不适用于最近邻算法。
5. 测试算法:计算错误率。
6. 使用算法:输入新数据并将其分类。
四、距离度量方法在进行最近邻分类时,需要计算新样本与已有样本之间的距离。
以下是常见的几种距离度量方法:1. 欧氏距离欧氏距离是最常用的距离度量方法,它是指在n维空间中两个点之间的真实距离。
公式如下:d(x,y) = sqrt((x1-y1)^2 +(x2-y2)^2 +...(xn-yn)^2)2. 曼哈顿距离曼哈顿距离是指在n维空间中两个点在各个维度上坐标数值差的绝对值之和。
公式如下:d(x,y) = |x1-y1| +|x2-y2| +...+|xn-yn|3. 切比雪夫距离切比雪夫距离是指在n维空间中两个点在各个维度上坐标数值差的最大值。
公式如下:d(x,y) = max(|x1-y1|, |x2-y2|,..., |xn-yn|)4. 余弦相似度余弦相似度是指两个向量夹角的余弦值,其取值范围为[-1, 1]。
当两个向量方向相同时,余弦相似度为1;当两个向量方向完全相反时,余弦相似度为-1;当两者之间不存在关系时,余弦相似度为0。
公式如下:cos(x,y) = (x*y)/(||x||*||y||)五、最近邻算法实现最近邻算法的实现过程通常可分为以下几个步骤:1. 准备数据将已有样本和新样本转化为机器学习可处理的格式,通常是向量或矩阵。
k-最近邻算法
1.k-最近邻算法是一种基于实例(Instance-based)的学习方法,也称为惰性学习(Lazy learning)方法或者近似实例学习方法。
它是一种分类方法,它不学习实例及其
之间的关系,而是直接存储数据,当需要进行分类预测时,寻找距离最近的K个点,然后
根据这些点的类别进行预测。
2.k-最近邻算法原理:通过比较未知实例与训练数据库中的实例,测量它们之间的距离,来预测该未知实例的类别。
与距离它最近的K个实例的类别最多的作为该未知实例的
类别。
3.k-近邻算法的优缺点:
优点:
1.简单易行:最近邻算法是计算机最简单的分类算法,直观有效,操作简单易行。
2.可预测性良好:最近邻分类算法可以获得较好的解决方法,并达到较高的预测性能。
3.大规模数据集可以很快地进行分类:kNN算法仅依赖训练数据中出现的模型,而不
用于存储数据,因此它可以在庞大的数据集上进行分类并实现极快的计算性能。
1.计算复杂度高:KNN算法比较复杂,需要调参数,计算复杂度较高且及时性较差。
2.存在样本不平衡问题:由于KNN算法没有考虑数据的内在分布特征,对于样本不平
衡的问题容易出现误分的情况。
3.维数灾难:KNN算法容易陷入维数灾难,即随着维数增加,距离也会不断增加,准
确率越来越低。
最近邻算法计算公式最近邻算法(K-Nearest Neighbors algorithm,简称KNN算法)是一种常用的分类和回归算法。
该算法的基本思想是:在给定一个新的数据点时,根据其与已有的数据点之间的距离来判断其类别或预测其数值。
KNN算法的计算公式可以分为两个部分:距离计算和分类预测。
一、距离计算:KNN算法使用欧氏距离(Euclidean Distance)来计算数据点之间的距离。
欧氏距离是指在m维空间中两个点之间的直线距离。
假设有两个数据点p和q,p的坐标为(p1, p2, ..., pm),q的坐标为(q1, q2, ..., qm),则p和q之间的欧氏距离为:d(p, q) = sqrt((p1-q1)^2 + (p2-q2)^2 + ... + (pm-qm)^2)其中,sqrt表示求平方根。
二、分类预测:KNN算法通过比较距离,根据最近的K个邻居来进行分类预测。
假设有N个已知类别的数据点,其中k个属于类别A,另外K个属于类别B,要对一个新的数据点p进行分类预测,KNN算法的步骤如下:1.计算p与每个已知数据点之间的距离;2.根据距离的大小,将距离最近的K个邻居选取出来;3.统计K个邻居中每个类别的数量;4.根据数量的大小,将p分为数量最多的那个类别。
如果数量相同,可以通过随机选择或其他规则来决定。
其中,K是KNN算法的一个参数,表示选取最近的K个邻居进行分类预测。
K的选择通常是基于经验或交叉验证等方法来确定的。
较小的K值会使模型更加灵敏,但也更容易受到噪声的影响,较大的K值会使模型更加稳健,但也更容易混淆不同的类别。
总结起来,KNN算法的计算公式可以表示为:1.距离计算公式:d(p, q) = sqrt((p1-q1)^2 + (p2-q2)^2 + ... + (pm-qm)^2)2.分类预测步骤:1)计算p与每个已知数据点之间的距离;2)根据距离的大小,选取距离最近的K个邻居;3)统计K个邻居中每个类别的数量;4)将p分为数量最多的那个类别。
knn算法解决实际问题的例子(一)KNN算法解决实际问题K最近邻(K-Nearest Neighbor, KNN)算法是一种常见的机器学习算法,可以用于解决多种实际问题。
下面是一些KNN算法在实际问题中的应用示例:1. 电影分类•问题描述:为了帮助用户选择适合的电影,我们需要根据用户的历史观看记录和评分,将电影进行分类,比如喜剧、动作、爱情等分类。
•解决思路:使用KNN算法,将用户的历史观看记录和评分作为特征向量,根据特征向量的相似度度量,找到K个和当前电影最相似的电影,将它们的分类作为当前电影的分类。
2. 图像识别•问题描述:给定一张未知分类的图像,我们需要将它分为不同的类别,比如动物、植物、建筑等。
•解决思路:使用KNN算法,将已知类别的图像转换成特征向量,比如使用图像的像素值作为特征,然后根据特征向量的相似度度量,找到K个和未知图像最相似的图像,将它们的类别作为未知图像的类别。
3. 推荐系统•问题描述:根据用户的历史行为和兴趣,向用户推荐适合的商品、音乐或文章等。
•解决思路:使用KNN算法,将用户的历史行为和兴趣转换成特征向量,比如使用用户的点击记录和评分作为特征,然后根据特征向量的相似度度量,找到K个和用户兴趣最接近的商品、音乐或文章,将它们推荐给用户。
4. 病症诊断•问题描述:根据病人的症状,判断可能的疾病并给出诊断结果。
•解决思路:使用KNN算法,将病人的症状转换成特征向量,比如使用病人的体温、心率、血压等作为特征,然后根据特征向量的相似度度量,找到K个和病人症状最相似的病例,将它们的疾病作为当前病人的诊断结果。
5. 文本分类•问题描述:对给定的文本进行分类,比如新闻分类、情感分析等。
•解决思路:使用KNN算法,将文本转换成特征向量,比如使用词袋模型或tf-idf作为特征,然后根据特征向量的相似度度量,找到K个和当前文本最相似的文本,将它们的类别作为当前文本的分类。
以上是一些KNN算法在实际问题中的应用示例,KNN的优点在于简单易理解、无需训练等,但也有一些缺点,比如计算复杂度较高、对噪声数据敏感等。
K-近邻算法⼀、概述k-近邻算法(k-Nearest Neighbour algorithm),⼜称为KNN算法,是数据挖掘技术中原理最简单的算法。
KNN 的⼯作原理:给定⼀个已知标签类别的训练数据集,输⼊没有标签的新数据后,在训练数据集中找到与新数据最邻近的k个实例,如果这k个实例的多数属于某个类别,那么新数据就属于这个类别。
可以简单理解为:由那些离X最近的k个点来投票决定X归为哪⼀类。
图1 图1中有红⾊三⾓和蓝⾊⽅块两种类别,我们现在需要判断绿⾊圆点属于哪种类别当k=3时,绿⾊圆点属于红⾊三⾓这种类别;当k=5时,绿⾊圆点属于蓝⾊⽅块这种类别。
举个简单的例⼦,可以⽤k-近邻算法分类⼀个电影是爱情⽚还是动作⽚。
(打⽃镜头和接吻镜头数量为虚构)电影名称打⽃镜头接吻镜头电影类型⽆问西东1101爱情⽚后来的我们589爱情⽚前任31297爱情⽚红海⾏动1085动作⽚唐⼈街探案1129动作⽚战狼21158动作⽚新电影2467?表1 每部电影的打⽃镜头数、接吻镜头数和电影分类表1就是我们已有的数据集合,也就是训练样本集。
这个数据集有两个特征——打⽃镜头数和接吻镜头数。
除此之外,我们也知道每部电影的所属类型,即分类标签。
粗略看来,接吻镜头多的就是爱情⽚,打⽃镜头多的就是动作⽚。
以我们多年的经验来看,这个分类还算合理。
如果现在给我⼀部新的电影,告诉我电影中的打⽃镜头和接吻镜头分别是多少,那么我可以根据你给出的信息进⾏判断,这部电影是属于爱情⽚还是动作⽚。
⽽k-近邻算法也可以像我们⼈⼀样做到这⼀点。
但是,这仅仅是两个特征,如果把特征扩⼤到N个呢?我们⼈类还能凭经验“⼀眼看出”电影的所属类别吗?想想就知道这是⼀个⾮常困难的事情,但算法可以,这就是算法的魅⼒所在。
我们已经知道k-近邻算法的⼯作原理,根据特征⽐较,然后提取样本集中特征最相似数据(最近邻)的分类标签。
那么如何进⾏⽐较呢?⽐如表1中新出的电影,我们该如何判断他所属的电影类别呢?如图2所⽰。