高等数学(第五版)10-3格林公式及其应用
- 格式:ppt
- 大小:1.52 MB
- 文档页数:32
§10.3 格林公式及其应用一、格林公式一元微积分学中最基本的公式 — 牛顿、莱布尼兹公式'=-⎰F x dx F b F a ab ()()()表明:函数'F x ()在区间[,]a b 上的定积分可通过原函数F x ()在这个区间的两个端点处的值来表示。
无独有偶,在平面区域D 上的二重积分也可以通过沿区域D 的边界曲线L 上的曲线积分来表示,这便是我们要介绍的格林公式。
1、单连通区域的概念设D 为平面区域,如果D 内任一闭曲线所围的部分区域都属于D ,则称D 为平面单连通区域;否则称为复连通区域。
通俗地讲,单连通区域是不含“洞”(包括“点洞”)与“裂缝”的区域。
2、区域的边界曲线的正向规定设L 是平面区域D 的边界曲线,规定L 的正向为:当观察者沿L 的这个方向行走时,D 内位于他附近的那一部分总在他的左边。
简言之:区域的边界曲线之正向应适合条件,人沿曲线走,区域在左手。
3、格林公式【定理】设闭区域D 由分段光滑的曲线L 围成,函数P x y (,)及Q x y (,)在D 上具有一阶连续偏导数,则有()∂∂∂∂Q x Py dxdy Pdx Qdy DL -=+⎰⎰⎰ (1)其中L 是D 的取正向的边界曲线。
公式(1)叫做格林(green)公式。
【证明】先证 -=⎰⎰⎰∂∂Py dxdy Pdx D L假定区域D 的形状如下(用平行于y 轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域D 给予证明即可。
D a x b x y x :,()()≤≤≤≤ϕϕ12[]-=-=-⎰⎰⎰⎰⎰∂∂∂∂ϕϕϕϕP y dxdy dx P y dy P x y dx D a b x x abx x 1212()()()()(,)=--⎰{[,()][,()]}P x x P x x dxabϕϕ21另一方面,据对坐标的曲线积分性质与计算法有Pdx Pdx Pdx Pdx PdxLABBCCEEA⎰⎰⎰⎰⎰=+++弧弧=+++⎰⎰P x x dx P x x dx ab ba[,()][,()]ϕϕ1200=--⎰{[,()][,()]}P x x P x x dxabϕϕ21因此 -=⎰⎰⎰∂∂Py dxdy Pdx D L再假定穿过区域D 内部且平行于x 轴的直线与的D 的边界曲线的交点至多是两点,用类似的方法可证∂∂Qx dxdy Qdx D L ⎰⎰⎰=综合有当区域D 的边界曲线与穿过D 内部且平行于坐标轴( x 轴或y 轴 )的任何直线的交点至多是两点时,我们有-=⎰⎰⎰∂∂P y dxdy Pdx D L , ∂∂Q x dxdy Qdx D L ⎰⎰⎰=同时成立。
第三节_格林公式及其应用
格林公式是一个重要的微积分计算工具,用于计算微分方程在给定边
界条件下的解。
它可以用来解决一类非常有用的问题,例如求解复杂的微
分方程组、积分变分形式的物理问题。
此外,格林公式还可以应用于计算
微分函数在任意区间上的有限性以及在一些特定情况下的无穷性。
格林公式的主要思想是,给定边界以及满足一些条件的控制变量,可
以将一个微分方程组的解表示为不同常量的线性组合。
因此,可以通过解
决有限个简单的常系数非齐次线性微分方程来求解更复杂的微分方程组。
其中,常系数非齐次线性微分对应的格林公式是:
y(t) = A*exp(αt) + B*exp(βt)
其中,A、B是常数,α、β是解的根。
这个公式可以用来求解不同
类型的微分方程,包括拉普拉斯方程、伯努利方程、线性齐次微分方程组等。
应用:
1、求解拉普拉斯方程
拉普拉斯方程是一类重要的常微分方程,它可以用来描述物理系统的
传播过程以及电、热等物理场的扩散等现象。
拉普拉斯方程的一般形式为:y"+αy'+βy=f(t)
这里,α、β是常数,f(t)是一个任意函数。
可以用格林公式来求
解这个方程的解:
y(t) = A*exp(αt) + B*exp(-αt) + [1/α]*∫exp(-αt)f(t)dt
其中,A、B是常数,α是解的根。
2、求解伯努利方程。
第三节 格林公式及其应用 ㈠.本课的基本要求掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数 ㈡.本课的重点、难点格林公式、平面上的曲线积分与路径无关的条件为本课重点,求全微分为难点 ㈢.教学内容一.格林公式及其应用微积分基本定理——牛顿-莱布尼兹公式确立了函数f(x)在闭区间上的定积分与它的原函数F(x)在这个区间的端点上的值之间的关系。
相仿的,在平面闭区域D 上的二重积分与沿区域D 的边界曲线L 上的曲线积分之间也有类似的关系。
格林(Green )公式就是阐明它们之间关系的一个重要公式。
定义(单连通域) 一个平面区域D ,如果全落在此区域内的任何一条封闭曲线都可以不经过D 以外的点而连续地收缩为一点,则称此区域D 为单连通的,否则为复连通的。
(如图) 我们首先规定区域D 的边界曲线L 的正向:当观察者沿L 的某个方向行走时,区域D 总在它的左边(如图),则该方向即为L 的正方向。
定理1(格林定理) 设D 是以分段光滑曲线L 为边界的平面有界闭区域,函数P(x,y)及Q(x,y)在D 上具有一阶连续的偏导数,则⎰⎰⎰+=∂∂-∂∂LQdy Pdx d yPx Q σ)(⑴其中符号⎰L表示沿L 正方向的曲线积分。
公式⑴称为格林公式。
证 先假设穿过区域D 内部且平行坐标轴的直线与D 的边界曲线L 的交点恰好为两点,即区域D 既是X ─型又是Y ─型的情形。
设}),()(|),{(21b x a x y x y x D ≤≤≤≤=ϕϕ。
因为yP∂∂连续,所以由二重积分的计算法有 ⎰⎰⎰⎰⎰-=∂∂=∂∂b a x x b a Ddx x x P x x P dy y y x P dx dxdy y P))}(,())(,({),(12)()(21ϕϕϕϕ 另一方向,由对坐标的曲线积分的性质及计算法有⎰⎰⎰⎰⎰+=+=abbaL L Ldx x x P dx x x P Pdx Pdx Pdx ))(,())(,(2121ϕϕ⎰⎰-=babadx x x P dx x x P ))(,())(,(21ϕϕ因此,=∂∂-⎰⎰Ddxdy y P⎰L Pdx ⑵ 设}),()(|),{(21d y c y x y y x D ≤≤≤≤=ψψ,类似地可证=∂∂⎰⎰Ddxdy x Q⎰LQdy ⑶由于D 既是X ─型又是Y ─型的,⑵、⑶同时成立,合并后即得公式⑴。
格林公式及其应用格林公式格林公式是向量分析中的一个重要定理,也被称为格林-斯托克斯定理。
它是由爱尔兰数学家乔治·格林在19世纪提出的,用于计算一个曲线或曲面上的环流和散度之间的关系。
格林公式的应用非常广泛,可以用来求解流体力学、电磁学和热力学等领域的问题。
下面将介绍格林公式的表达形式,以及它在常见问题中的具体应用。
1.格林公式的表达形式格林公式有两种常见的表达形式,一种是针对平面区域的格林公式,另一种是针对空间曲线的格林公式。
下面将分别介绍这两种格林公式的表达形式。
1.1平面区域的格林公式若D是一个紧致的平面区域,边界为C(C是一个简单、逐段光滑的曲线),向量函数F(x,y)=(P(x,y),Q(x,y))在区域D中具有二阶连续偏导数,则有如下格林公式:∬D(∂Q/∂x-∂P/∂y)dxdy=∮C(Pdx+Qdy)其中,∂P/∂y和∂Q/∂x分别表示P和Q对y和x的偏导数,dxdy表示在D中的面积元素,Pdx+Qdy表示沿着边界C的曲线元素。
1.2空间曲线的格林公式若S是一个有向光滑曲面,它的边界为C(C是一个简单、光滑的曲线),向量函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))在曲面S内具有连续偏导数,则有如下格林公式:∯S(∂R/∂y-Q)dydz+(∂P/∂z-R)dzdx+(∂Q/∂x-P)dxdy=∮C(Pdx+Qdy+Rdz)其中,∂P/∂z、∂Q/∂x和∂R/∂y分别表示P、Q和R对z、x和y的偏导数,dydz、dzdx和dxdy表示在S内的面积元素,Pdx+Qdy+Rdz表示沿着边界C的曲线元素。
2.格林公式的应用格林公式具有广泛的应用,在流体力学、电磁学、热力学等领域都能够找到它的身影。
下面将以几个例子来说明格林公式的具体应用。
2.1流体力学中的应用格林公式在流体力学中常常用于计算流体的环流和散度。
例如,可以利用格林公式来推导速度势函数和流函数之间的关系,进而求解流场中的速度分布。
§10.3格林公式及其应用10.3.1格林公式1.单连通区域与复连通区域若平面区域D 内任一封闭曲线围成的部分都D 属于,则称为 D 单连通区域,否则称为复连通区域。
例如:圆形区域⎭⎬⎫⎩⎨⎧<+1),(22y x y x 、上半平面{}0),(>y y x 是单连通区域;圆环区域⎭⎬⎫⎩⎨⎧<+<41),(22y x y x 、⎭⎬⎫⎩⎨⎧<+<20),(22y x y x 是复连通区域。
通俗地说,单连通域就是不含有“洞”(包括点“洞” )的区域。
2.区域D 的边界曲线C 的正向规定的 C 正向如下:当观察者沿的 C 此方向行走时,靠近 D 他的部分总在他的左侧。
例如是 D 由边界曲线1C 和2C 所围成的复连通区域,的 1C 正向是逆时针方向,的 2C 正向是顺时针方向。
3.定理1设是 D 以逐段光滑曲线为C 边界的平面闭区域,函数),(y x P 、),(y x Q 在上 D 具有一阶连续偏导数,则有dxdy yPx Q Qdy Pdx DC ⎰⎰⎰∂∂-∂∂=+)(—格林(Green )公式 其中的取正向的边界曲线是D C 。
公式(1)称为格林(Green )公式。
证明:先假设穿过区域内部 D 且平行坐标轴的直线与的 D 边界曲线的 C 交点恰好为两点。
即D 既是型的区域型的又是 Y X 。
设}),()(),{(21b x a x y y x y y x D ≤≤≤≤=,∵yP ∂∂连续, ∴=σ∂∂⎰⎰d y P D⎰⎰∂∂bax y x y dy yPdx )(2)(1dx x y x P x y x P b a)]}( ,[)]( ,[{ 12⎰-=另一方面,有⎰⎰⎰⋂⋂+=BNAAMB C dx y x P ),(dx x y x P dx x y x P abb a)]( ,[ )]( ,[ 2 1⎰⎰+=dx x y x P x y x P ba)]}( ,[)]( ,[{ 21⎰-=,∴σ∂∂-=⎰⎰⎰d yPdx y x P DC),(。