第78章分组码和卷积码
- 格式:ppt
- 大小:2.26 MB
- 文档页数:20
信息论与编码--卷积码(掌握利用编码电路求生成矩阵和监督矩阵)差错控制编码系统中除了使用分组码之外,另一类广泛应用的称为卷积码,在分组码的编码和译码过程中,每个码字的监督元只与本码字的信息元有关,而与其它码字的信息元无关,即分组码的编码器是一个无记忆的逻辑电路。
但是,卷积码的编码过程中,本码字的监督元不仅与本码字的信息元有关,而且与前m 个码字的信息元有关,因此卷积码的编码器是一个有记忆的时序电路。
卷积码由于更充分地利用码字之间的相关性,可以减少码字长度,简化编译码电路,并得到较好的差错控制性能,因此卷积码在通信领域,特别是卫星通信,空间通信领域得到广泛的应用。
7-1 卷积码的基本原理 7-1-1 卷积码的基本概念[例子]:通过一个例子说明卷积码的一些基本概念;下图给出了一个(3,2,2)卷积码编码器的原理图,当某一时刻,编码器输入并行一个信息码字为mi=[mi(1),mi(2)],编码器并行输出由三个码元组成的卷积码的码字,c i (1)c (1)c i (2) c i (3)m i (1) m i (2)[ci]=[ci(1),ci(2),ci(3)]=[mi(1),mi(2),pi]。
[ci]称为一个码字。
mi 为信息元,pi 为监督元。
可以看出卷积码的输入输出关系为:ci(1)=mi(1) ci(2)=mi(2)ci(3)=mi(1)+mi(2)+mi-1(2)+mi-2(1)可见,卷积码当前输出的码字的监督元不仅与当前输入的信息元有关而且还与前2个码元有关。
这时编码器由2级移位寄存器构成。
定义:卷积码字中码元的个数为n0,码字中信息元个数为k0,由m 级移位寄存器构成的编码器称m 为编码码字约束长度。
有的教材称m’=m+1为约束长度,(m+1)n0为编码码元约束长度。
卷积码记为(n0,k0,m)。
定义:R=k0/n0为码率(Code rate)。
它是表示卷积码的编码效率。
卷积码的编码器的一般形式为:看以下卷积码的约束关系图:在译码时,译码在ci 时要利用到ci-1,ci-2,同时译码字ci+1,ci+2时还要利用到ci 。
在一个二进制分组码(n,k)当中,包含k个信息位,码组长度为n,每个码组的(n-k)个校验位仅与本码组的k个信息位有关,而与其它码组无关。
为了达到一定的纠错能力和编码效率(=k/n),分组码的码组长度n通常都比较大。
编译码时必须把整个信息码组存储起来,由此产生的延时随着n的增加而线性增加。
为了减少这个延迟,人们提出了各种解决方案,其中卷积码就是一种较好的信道编码方式。
这种编码方式同样是把k个信息比特编成n个比特,但k和n通常很小,特别适宜于以串行形式传输信息,减小了编码延时。
与分组码不同,卷积码中编码后的n个码元不仅与当前段的k个信息有关,而且也与前面(N-1)段的信息有关,编码过程中相互关联的码元为nN个。
因此,这N时间内的码元数目nN通常被称为这种码的约束长度。
卷积码的纠错能力随着N的增加而增大,在编码器复杂程度相同的情况下,卷段积码的性能优于分组码。
另一点不同的是:分组码有严格的代数结构,但卷积码至今尚未找到如此严密的数学手段,把纠错性能与码的结构十分有规律地联系起来,目前大都采用计算机来搜索好码。
下面通过一个例子来简要说明卷积码的编码工作原理。
正如前面已经指出的那样,卷积码编码器在一段时间内输出的n位码,不仅与本段时间内的k位信息位有关,而且还与前面m段规定时间内的信息位有关,这里的m=N-1通常用(n,k,m)表示卷积码(注意:有些文献中也用(n,k,N)来表示卷积码)。
图8-8就是一个卷积码的编码器,该卷积码的n= 2,k= 1,m= 2,因此,它的约束长度nN = n×(m+1) = 2×3= 6。
(2,1,2)卷集码编码器在图8-8中,与为移位寄存器,它们的起始状态均为零。
、与、、之间的关系如下:(8-41)假如输入的信息为D = [11010],为了使信息D全部通过移位寄存器,还必须在信息位后面加3个零。
表8-9列出了对信息D进行卷积编码时的状态。
表解析表示较为抽象难懂,而用图解表示法来描述卷积码简单明了。
卷积码引言卷积码是一种常用的纠错编码方法,经常用于数字通信中。
它是一种线性块码,通过将输入数据和码字的历史信息进行卷积操作,生成输出码字。
卷积码具有优秀的纠错性能和高效的解码算法,在实际应用中得到了广泛的使用。
原理卷积码的编码过程主要由两个部分组成:移位寄存器和更新寄存器。
移位寄存器用于存储输入数据的历史信息,更新寄存器用于更新码字。
卷积码的编码可以用一个状态机来表示,状态机的每个状态对应于一个码字。
通过状态转移矩阵来描述状态之间的转移关系。
卷积码的具体编码步骤如下: 1. 将输入数据放入移位寄存器。
2. 根据移位寄存器中的数据和更新寄存器的状态,计算输出码字。
3. 将输出码字发送给接收端。
卷积码的解码过程主要是一个估计问题,通过找到最有可能的原始输入数据来进行解码。
特点卷积码具有以下几个特点: - 纠错能力强:卷积码通过引入冗余信息,即码字的历史信息,可以检测和纠正数据传输中的错误。
不同的卷积码可以提供不同的纠错能力。
- 高效的解码算法:卷积码的解码算法相对简单,常用的解码算法有迭代译码算法和软判决译码算法。
这些算法能够以较低的复杂度实现可靠的解码。
- 码率灵活:卷积码的码率可以根据需求进行调整。
常用的卷积码有1/2、1/3、2/3等码率,通过调整码率可以在保证一定的纠错性能的同时,提高数据传输的效率。
应用卷积码在数字通信中有着广泛的应用,常用于以下方面:1. 移动通信:在移动通信系统中,卷积码常用于物理信道的编码和解码,提高信号的抗干扰能力和传输质量。
2. 数字广播:数字广播系统中,卷积码用于提供高质量的音视频传输,保证数据在无线环境下的实时性和可靠性。
3. 卫星通信:卫星通信系统中,卷积码被广泛应用于数据传输和媒体分发,确保数据在不同地区之间的可靠传输。
结论卷积码是一种常用的纠错编码方法,具有优秀的纠错性能和高效的解码算法。
它在数字通信中发挥着重要的作用,广泛应用于移动通信、数字广播和卫星通信等领域。
西安邮电大学通信与信息工程学院科研训练报告专业班级: 通工1112班 学生姓名: 苏越 学号(班内序号): 03111030 (05号)2014 年 4 月 11 日——————————————————————————装订线————————————————————————————————报告份数:摘要卷积码是P.Elias于1955年发明的一种分组码。
分组码在编码时,先将输入信息码元序列分为长度为k的段,然后按照编码规则,给每段附加上r位监督码元,构成长度为n的码组。
各个码组之间没有约束关系,即监督码元只监督本码组的码元有无错码。
因此在解码时各个接收码组也是分别独立地进行解码的。
卷积码则不同。
卷积码在编码时,虽然也是把k个比特的信息段变成n个比特的码组,但是监督码元不仅仅和当前的k比特信息段有关,而且还同前面m=(N-1)个信息段有关。
所以一个码组中的监督码元监督着N 个信息段。
通常将N成为码组的约束度。
一般来说,对于卷积码,k和n的值是比较小的整数。
通常将卷积码记作做(n,k,m),其码率为k/n。
关键词:卷积码、编码、编码器AbstractConvolution code is P.E lias in 1955 a group of invention code. In the code block code, at first the input information code yuan sequence into the period length is k, then according to coding rules to give each section on r a supervision code additional RMB, constitute the length is n yards group. Each code without constraint relation between group, namely supervision code yuan only supervise this code of the group code element for wrong words.if it. So when receiving yards in the decoding each group were also independently of the decoding. Convolution code is different. Convolution code in the coding, although it's a bit of information section k n bits of code into a group, but supervision code yuan and the current k bit not just for information, but also on the front with m = (n-1) information section on. So a group of the supervision code code element oversees N information section. Usually will become yards of the group N constraint degree. Generally speaking, for convolution code, k and n value is smaller integer. Usually will convolution code written for do (n, k, m), the code rate for k/n.Keywords: convolution code, coding, encoder一、引言卷积编码在通信系统当中是一种重要的编码技术,对其进行编码人工来做比较复杂,本次就利用matlab擅长的矩阵运算,对序列信息进行卷积编码。
卷积码卷积码将k个信息比特编成n个比特,但k和n通常很小,特别适合以串行形式进行传输,时延小。
定义若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。
卷积码将k元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进卷积码的编码器行传输,时延小。
与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。
卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。
在编码器复杂性相同的情况下,卷积码的性能优于分组码。
介绍一种卷积码编码器卷积码是1955年由Elias等人提出的,是一种非常有前途的编码方法。
我们在一种卷积码编码器一些资料上可以找到关于分组码的一些介绍,分组码的实现是将编码信息分组单独进行编码,因此无论是在编码还是译码的过程中不同码组之间的码元无关。
根本区别卷积码和分组码的根本区别在于,它不是把信息序列分组后再进行单独编码,而是由连续输入的信息序列得到连续输出的已编码序列。
即进行分组编码时,其本组中的n-k个校验元仅与本组的k个信息元有关,而与其它各组信息无关;但在卷积码中,其编码器将k个信息码元编为n个码元时,这n个码元不仅与当前段的k个信息有关,而且与前面的(m-1)段信息有关(m为编码的约束长度)。
有关信息同样,在卷积码译码过程中,不仅从此时刻收到的码组中提取译码信息,而且还要卷积码编码器利用以前或以后各时刻收到的码组中提取有关信息。
而且卷积码的纠错能力随约束长度的增加而增强,差错率则随着约束长度增加而呈指数下降。
约束关系卷积码(n,k,m) 主要用来纠随机错误,它的码元与前后码元有一定的约束关系,编码复杂度可用编码约束长度m*n来表示。
2.7.卷积码分组码是把k个信息比特的序列编成n个比特的码组,每个码组的n-k个校验位仅与本码组的k个信息位有关,而与其他码组无关。
为了达到一定的纠错能力和编码效率,分组码的码组长度一般都比较大。
编译码时必须把整个信息码组存储起来,由此产生的译码时延随n的增加而增加。
卷积码是另外一种编码方法,它也是将k个信息比特编成n个比特,但k和n通常很小,特别适合以串行形式进行传输,时延小。
与分组码不同,卷积码编码后的n个码元不仅与当前段的k个信息有关,还与前面的N-1段信息有关,编码过程中互相关联的码元个数为nN。
卷积码的纠错性能随N的增加而增大,而差错率随N的增加而指数下降。
在编码器复杂性相同的情况下,卷积码的性能优于分组码。
但卷积码没有分组码那样严密的数学分析手段,目前大多是通过计算机进行好码的搜索。
2.7.1.卷积码的结构和描述一、卷积码的一般结构卷积码编码器的形式如图所示,它包括:一个由N段组成的输入移位寄存器,每段有k个,共Nk个寄存器;一组n个模2和相加器,一个由n级组成的输出移位寄存器。
对应于每段k个比特的输入序列,输出n个比特。
由上图可以看到,n个输出比特不仅与当前的k个输入信息有关,还与前(N-1)k个信息有关。
通常将N称为约束长度,(有的书的约束长度为Nn)。
常把卷积码记为:(n,k,N),当k=1时,N-1就是寄存器的个数。
二、卷积码的描述描述卷积码的方法有两类:图解法和解析表示。
图解法包括:树图、状态图、网格图解析法包括:矩阵形式、生成多项式形式。
以如下的结构说明各种描述方法。
1、树图根据上图,我们可以得到下表:我们可以画出如下的树状图:2、 状态图3、 网格图例1, 输入为1 1 0 1 1 1 0,输出为: 11 01 01 00 01 10 014、 生成多项式表示 定义],,[1211101g g g g=,],,[2221202g g g g=则上述结构为71=g,52=g,这里用8进制表示21,g gabcd⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2101211101],,[m m m g g g c ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2102221202],,[m m m g g g c定义2212111011)(DD Dg D g g D g ++=++=2222212021)(DDg D g g D g +=++=则输入信息,...,,210b b b 的多项式为....)(332210++++=b D b D b b D M那么我们可以得到输出)()()(11D g D M D C = )()()(22D g D M D C =最终输出是)(),(21D C D C的相同次数项的排列。
卷积码的原理1. 引言卷积码是一种用于数字通信中的误码纠正编码技术。
它利用卷积操作对输入数据进行编码,以增强数据传输的可靠性。
本文将详细介绍卷积码的基本原理,包括卷积操作、生成多项式、状态机和Viterbi解码算法。
2. 卷积操作卷积操作是卷积码编码的核心步骤。
它通过将输入序列与一个或多个权重系数序列进行点乘,生成输出序列。
具体而言,假设输入序列为x={x0,x1,...,x N−1},权重系数序列为ℎ={ℎ0,ℎ1,...,ℎK−1},则输出序列y={y0,y1,...,y M−1}可以通过以下公式计算得到:K−1y i=∑ℎj⋅x i−jj=0其中,M为输出序列的长度,K为权重系数序列的长度。
3. 生成多项式在卷积码中,生成多项式决定了编码器的结构和性能。
它由两个多项式组成:一个是分子多项式(记作G1),用于计算输出序列的第一个比特;另一个是分母多项式(记作G2),用于计算输出序列的其余比特。
生成多项式可以写成以下形式:G(D)=G1(D)/G2(D)其中,D表示延迟操作符。
生成多项式的选择对卷积码的性能和复杂性有重要影响。
常见的生成多项式有三种:(1, 3)、(1, 5)和(1, 7)。
它们分别对应于分子多项式为(1+D3)、(1+D2+D5)和(1+D2+D3+D4+D6),分母多项式均为(1+D+D2)。
4. 状态机卷积码编码器可以看作是一个有限状态机。
状态机由一组状态和状态转移函数组成,用于描述编码器的内部状态变化。
在卷积码中,每个状态对应于编码器内部的寄存器值。
以(1, 3)卷积码为例,它有8个不同的状态,编号为0到7。
初始状态通常设置为0。
每个输入比特导致状态转移,并且在每个时钟周期结束时产生一个输出比特。
具体而言,根据输入比特和当前状态,可以确定下一个状态和输出比特。
这种状态转移可以用一个状态转移图来表示。
5. Viterbi解码算法Viterbi算法是一种用于卷积码解码的最优算法。
卷积码的基本原理卷积码的基本原理1. 引言•卷积码是一种常用于通信系统中的纠错编码技术。
•它通过引入冗余信息,可以在信道传输过程中检测出并纠正部分错误。
2. 卷积码的定义•卷积码是一种线性的、时间变化的编码方式。
•它可以将输入比特序列转换为输出比特序列,并满足一定的性质。
3. 编码过程•卷积码的编码过程可以用一个状态图表示。
•输入比特依次通过编码器的不同路径,生成输出比特序列。
4. 编码器结构•卷积码的编码器由若干个寄存器和逻辑门组成。
•每个寄存器存储一个状态,逻辑门用于生成输出比特。
5. 纠错能力•卷积码的纠错能力通过其约束长度和码距来衡量。
•约束长度表示编码器中寄存器的数量。
•码距表示卷积码能够检测和纠正的最大错误比特数量。
6. Viterbi解码算法•Viterbi解码算法是一种常用于卷积码解码的算法。
•它通过动态规划的方式寻找最可能的输入比特序列。
7. 进一步研究•卷积码是一个广泛研究的领域,有很多相关的扩展和改进算法。
•感兴趣的读者可以深入研究卷积码的不同应用和改进算法。
以上是针对“卷积码的基本原理”的简要介绍和解释。
卷积码作为一种常用的纠错编码技术,可以在信道传输过程中提高系统的可靠性。
同时,关于卷积码的编码结构、纠错能力和解码算法等方面也有很多相关的研究和应用。
对卷积码感兴趣的读者可以继续深入学习和了解。
8. 卷积码的应用•卷积码在通信领域中有着广泛的应用。
•它可以用于数字电视的信号传输,提高传输质量和可靠性。
•在无线通信系统中,卷积码可以提高信号的抗干扰能力。
•在存储系统中,卷积码也可以用于数据的纠错和恢复。
9. 卷积码的性质•卷积码具有良好的线性性质。
•通过矩阵表示可以更形象地描述卷积码的性质和特点。
•矩阵形式的表示方便进行编码和解码运算。
10. 卷积码的误码性能•误码性能是衡量卷积码性能的重要指标之一。
•通过误码率曲线可以评估卷积码在不同信噪比条件下的性能。
•在设计卷积码时,可以根据需要选择适当的编码率和约束长度,以达到所需的误码性能。
线性分组码,卷积码,交织码原理MATLAB第六次预习报告研五队李振坤S201301104线性分组码1. 基本概念●系统码:编码后,信息码元本身不变,只在信息码元后加入监督码元。
●线性码:监督码元和信息码元成线性关系的码型。
●分组码:将信息码分组,并为每组信息码附加若干监督码的编码。
分组码一般用表示,为实际传送的码长,是信息码长,是监督码长。
●线性分组码:分组码的信息码元和监督码元,由一些线性代数方程联系起来。
分组是指编、译码过程是按分组进行的,而线性是指分组码中的监督码元按线性方程生成的。
【注】线性分组码的编码问题,就是要建立一组线性方程组,已知k个系数(即信息码),要求n-k个未知数(即监督码)。
2. 线性分组码的主要性质(1)封闭性封闭性是指码中任意两许用码组之和(逐位模2和)仍为一许用码组,这就是说,若A1和A2为码中的两个许用码组,则A1+A2仍为其中的一个许用码组。
(2)码的最小距离等于非零码的最小重量因为线性分组码具有封闭性,因而两个码组之间的距离(模2减)必是另一码组的重量。
为此,码的最小距离也就是码的最小重量,当然,除全“0”码组外。
3. 汉明码汉明码是用于纠正单个错误的线性分组码,其特点为:(1)最小码距(2)纠错能力(3)监督码长【注】(4)总码长()(5)信息码长()(6)编码效率(当r很大时,R趋向于1,效率高)因此,当r=3,4,5,6??时,分别有(7,4)、(15,11),(31,26),(63,57)等汉明码。
4. (7,4)汉明码在(7,4)汉明码中,码组为,其中为4个信息元,为3个监督码元。
监督码元与信息元之间的关系为:(9-4)生成矩阵G:编码时使用,用于产生整个码组,包括信息码和监督码。
改写为其中为阶单位矩阵;由生成矩阵为阶矩阵。
称为生成矩阵,它的各行是线性无关的。
可以产生整个码组,码组C是系统码(即信息码保持不变,监督码附加其后)。
【注】(1)上述生成矩阵为典型形式,保证能产生系统码。
卷积编码原理引言卷积编码是一种常见的错误控制编码技术,广泛应用于通信和存储系统中。
它通过将输入数据与一个固定的卷积核进行卷积操作,将输入数据编码为输出序列,从而实现对数据的纠错和检测。
本文将详细介绍卷积编码的原理和应用。
卷积编码的基本原理卷积编码是一种线性块码,它利用卷积运算来增加冗余度,以提高数据传输的可靠性。
卷积编码器由一个或多个状态机组成,每个状态机都是一个有限状态自动机。
输入数据被映射到编码器的状态机,然后通过卷积运算将输入数据编码为输出序列。
卷积编码的特点卷积编码具有以下几个特点: 1. 冗余度高:卷积编码通过引入冗余数据来实现纠错和检测功能,因此编码后的数据比原始数据长度更长。
2. 码率可调:卷积编码的码率可以根据需要进行调整,通过改变编码器的参数可以实现不同的码率。
3. 纠错能力强:卷积编码可以检测和纠正输入数据中的错误,提高数据传输的可靠性。
卷积编码的应用卷积编码广泛应用于通信和存储系统中,其中最常见的应用是在无线通信系统中。
卷积编码可以有效地降低无线信道的误码率,提高信号的可靠性。
此外,卷积编码还被用于存储介质的纠错,如光盘和硬盘等。
卷积编码的实现卷积编码的实现需要以下几个步骤: 1. 确定编码器的结构:选择适当的卷积核和状态机数量来构建编码器。
2. 映射输入数据到状态机:将输入数据映射到编码器的状态机中。
3. 进行卷积运算:通过卷积运算将输入数据编码为输出序列。
4. 添加冗余数据:根据需要添加冗余数据以增加纠错能力。
5. 输出编码数据:将编码后的数据输出到传输或存储介质中。
卷积编码的性能评估卷积编码的性能可以通过误码率和纠错能力来评估。
误码率是指在传输或存储过程中发生错误的比例,纠错能力是指编码器能够纠正的错误数量。
通过对卷积编码器进行仿真和实验,可以得到其性能曲线,从而评估其在不同条件下的性能表现。
卷积编码的改进方法为了进一步提高卷积编码的性能,人们提出了许多改进方法,如迭代卷积编码、级联卷积编码等。
卷积码编码原理卷积码是一种常用的编码方式,它在通信系统中起着非常重要的作用。
卷积码编码原理是指利用卷积码对信息进行编码的基本原理,下面将对卷积码编码原理进行详细介绍。
首先,我们需要了解卷积码的结构。
卷积码是由一个或多个时变系统组成的编码器,它将输入的信息序列转换为输出的码字序列。
在卷积码编码原理中,我们需要了解卷积码的生成多项式和约束长度。
生成多项式决定了卷积码的性能,而约束长度则决定了卷积码的记忆能力。
其次,我们需要了解卷积码的编码过程。
卷积码的编码过程是通过对输入的信息序列进行卷积运算,得到输出的码字序列。
在编码过程中,卷积码的每一个输出都是由输入序列的若干个元素经过加权后得到的。
这种加权操作是通过卷积码的状态转移图来实现的,而状态转移图则是由卷积码的生成多项式和约束长度决定的。
另外,我们还需要了解卷积码的性能分析。
卷积码的性能分析是通过计算码字序列的误码率来实现的。
在卷积码编码原理中,我们需要了解卷积码的自由距离和最小距离。
自由距离是指卷积码的最大码长下的最小距离,而最小距离则是指卷积码的所有码字中最小的距离。
这两个性能参数决定了卷积码的纠错能力和译码复杂度。
最后,我们需要了解卷积码的应用。
卷积码在通信系统中有着广泛的应用,例如在无线通信、卫星通信和光纤通信中都可以看到卷积码的身影。
在这些应用中,卷积码通过提高系统的抗干扰能力和纠错能力,提高了通信系统的可靠性和稳定性。
总之,卷积码编码原理是通信系统中的重要内容,它对于理解和设计通信系统具有重要意义。
通过对卷积码的结构、编码过程、性能分析和应用进行深入了解,我们可以更好地应用卷积码技术,提高通信系统的性能和可靠性。
卷积码的基本原理引言卷积码是一种线性纠错码,广泛应用于数字通信和存储系统中。
它通过对数据进行编码,增加冗余信息,以提高数据传输的可靠性。
在接收端,卷积码通过解码算法可以检测和纠正传输过程中引入的错误。
1. 编码过程卷积码的编码过程可以看作是一个滑动窗口对输入数据进行运算的过程。
设输入序列为x[n],输出序列为y[n],编码器有K个输入(信息)比特和N个输出(编码)比特。
首先,将输入序列x[n]按照一个固定的时间窗口长度分组,并将分组后的每一组与一个固定的生成多项式进行卷积运算。
生成多项式由编码器的结构决定。
例如,对于一个3输入2输出(记作(3,2))的卷积编码器,生成多项式可以表示为:G(D)=1+D2+D3。
接下来,将每一组运算结果连接起来得到输出序列y[n]。
2. 状态机在理解卷积编码原理时,需要引入状态机的概念。
状态机描述了编码器内部状态之间的转移关系。
对于一个(K,N)的卷积编码器,其状态机包含2K个状态,每个状态对应一个输出比特的编码过程。
以(3,2)卷积编码器为例,其状态机如下图所示:stateDiagram-v2[*] --> 00/0000/00 --> 01/01: 000/00 --> 10/10: 101/01 --> 11/11: 001/01 --> 00/10: 110/10 --> 00/11: 010/10 --> 11/01: 111/11 --> 10/00: 011/11 --> 01/00: 1上图中,每个状态用两个比特表示,例如00表示当前状态为0。
箭头上的数字表示输入比特,例如从00到01的箭头上标注的数字为0。
状态转移矩阵和输出矩阵根据生成多项式和状态机的关系,可以得到一个状态转移矩阵和一个输出矩阵。
这两个矩阵是描述卷积编码器行为的重要工具。
对于一个(K,N)卷积编码器,其状态转移矩阵是一个2K×K的二进制矩阵,用来描述状态之间的转移关系。
MATLAB第六次预习报告研五队李振坤S201301104线性分组码1. 基本概念●系统码:编码后,信息码元本身不变,只在信息码元后加入监督码元。
●线性码:监督码元和信息码元成线性关系的码型。
●分组码:将信息码分组,并为每组信息码附加若干监督码的编码。
分组码一般用表示,为实际传送的码长,是信息码长,是监督码长。
●线性分组码:分组码的信息码元和监督码元,由一些线性代数方程联系起来。
分组是指编、译码过程是按分组进行的,而线性是指分组码中的监督码元按线性方程生成的。
【注】线性分组码的编码问题,就是要建立一组线性方程组,已知k个系数(即信息码),要求n-k个未知数(即监督码)。
2. 线性分组码的主要性质(1)封闭性封闭性是指码中任意两许用码组之和(逐位模2和)仍为一许用码组,这就是说,若A1和A2为码中的两个许用码组,则A1+A2仍为其中的一个许用码组。
(2)码的最小距离等于非零码的最小重量因为线性分组码具有封闭性,因而两个码组之间的距离(模2减)必是另一码组的重量。
为此,码的最小距离也就是码的最小重量,当然,除全“0”码组外。
3. 汉明码汉明码是用于纠正单个错误的线性分组码,其特点为:(1)最小码距(2)纠错能力【注】(3)监督码长(4)总码长()(5)信息码长()(6)编码效率(当r很大时,R趋向于1,效率高)因此,当r=3,4,5,6……时,分别有(7,4)、(15,11),(31,26),(63,57)等汉明码。
4. (7,4)汉明码在(7,4)汉明码中,码组为,其中为4个信息元,为3个监督码元。
监督码元与信息元之间的关系为:(9-4)生成矩阵G:编码时使用,用于产生整个码组,包括信息码和监督码。
改写为其中称为生成矩阵,它的各行是线性无关的。
为阶单位矩阵;为阶矩阵。
由生成矩阵可以产生整个码组,码组C是系统码(即信息码保持不变,监督码附加其后)。
【注】(1)上述生成矩阵为典型形式,保证能产生系统码。
信道编码分类信道编码是一种将数据信息转换成特定格式的编码方式,以提高数据的可靠性和传输速率。
根据不同的编码方式,信道编码可分为三大类:前向纠错码、回退纠错码以及分组编码。
下面将对这三类编码进行详细介绍。
一、前向纠错码前向纠错码(Forward Error Correction,FEC)是一种通过向待传输的数据中添加冗余信息来实现纠错的编码方式。
它在发送端将原始数据进行编码,生成纠错码,并将生成的码字一同发送给接收端。
接收端通过对接收到的码字进行解码,可以恢复出原始的数据。
1. 卷积码卷积码是一种经典的前向纠错码,它采用移位寄存器和异或运算来生成纠错码。
卷积码具有连续的编码特性,适用于串行传输和高误码率的信道。
常见的卷积码有卷积码的集结码(Convolutional Code Concatenated,CCC)和卷积码的交织码(Convolutional Code Interleaved,CCI)等。
2. 矩阵码矩阵码是一种通过矩阵运算实现纠错的编码方式。
常见的矩阵码有海明码(Hamming Code)、Reed-Solomon码等。
与卷积码相比,矩阵码具有更高的纠错能力和较低的译码复杂度。
矩阵码广泛应用于存储介质、数字电视等领域。
二、回退纠错码回退纠错码(Automatic Repeat reQuest,ARQ)是一种采用反馈机制来实现纠错的编码方式。
它在发送端将原始数据进行分组,并附加检测码,将分组数据发送给接收端。
接收端在接收到数据后,对数据进行校验,如果发现错误,通过发送请求重传的消息来要求发送端重新发送数据。
1. 奇偶检验码奇偶检验码是一种简单的纠错码,通过统计数据中二进制位的1的个数,来判断数据的奇偶性。
如果数据中1的个数是偶数,则在最后添加一个1,使得数据的奇偶性变为奇数;如果数据中1的个数是奇数,则在最后添加一个0,使得数据的奇偶性变为偶数。
2. CRC码CRC码是一种循环冗余校验码,通过多项式运算来生成校验码。
卷积码的基本原理引言卷积码是一种用于通信和存储系统中的编码技术。
它通过将输入数据序列转换为更长的输出序列,以提高数据传输的可靠性。
卷积码的基本原理是利用线性移位寄存器和异或运算来实现。
在本文中,我们将详细介绍卷积码的基本原理,包括卷积码的定义、生成多项式、状态转移图、编码和解码过程等。
卷积码的定义卷积码是一种线性块码,它通过将输入数据序列与一组固定的码字生成多项式进行卷积运算得到输出数据序列。
卷积码由三个参数定义:码率(rate)、约束长度(constraint length)和生成多项式(generating polynomial)。
码率表示每个输入比特对应的输出比特数,约束长度表示线性移位寄存器的长度,生成多项式表示卷积码的生成过程。
生成多项式生成多项式是卷积码的核心部分,它决定了卷积码的性能和解码复杂度。
生成多项式通常用多项式系数表示,例如,生成多项式”G(D)=1+D2+D3”表示生成多项式系数为[1,0,1,1]。
生成多项式的次数等于约束长度加1。
生成多项式的选择对卷积码的性能有很大影响,通常需要通过计算误码率和复杂度来进行选择。
状态转移图卷积码可以用状态转移图来表示,状态转移图是一个有向图,其中每个节点表示一个状态,每条边表示一个输入比特和输出比特的转换。
状态转移图展示了卷积码的编码过程,并且可以用于解码。
状态转移图中的每个节点表示线性移位寄存器的状态,每个边表示一个输入比特和输出比特的转换。
编码过程卷积码的编码过程是将输入数据序列转换为输出数据序列的过程。
编码过程涉及到线性移位寄存器的状态转移和异或运算。
首先,将输入比特送入线性移位寄存器的第一个寄存器,并将其他寄存器的数据向右移动一位。
然后,将线性移位寄存器中的数据与生成多项式进行异或运算,得到输出比特。
最后,将输出比特存储起来,并将线性移位寄存器的状态更新为新的状态。
解码过程卷积码的解码过程是将接收到的输出数据序列转换回输入数据序列的过程。