第2课时 求一元二次方程的近似根
- 格式:ppt
- 大小:3.75 MB
- 文档页数:23
21.3 二次函数与一元二次方程(第二课时)实验中学-余志高一、教材分析:《利用二次函数的图像解一元二次方程》选自义务教育课程教科书《数学》(沪科版)九年级上册第21章第3节,这节课是在学生学习了二次函数与一元二次方程的关系,知道二次函数的图像与x 轴交点个数的不同对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况下继续经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验及了解一元二次不等式的解集..这也突出了课标的要求:注重数形结合。
二、教学目标【知识与技能】掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系,会用二次函数的图象求一元二次方程的近似解以及一元二次不等式的解集.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.【过程与方法】经历探究二次函数与一元二次方程、一元二次不等式关系的过程,体会函数、方程、不等式之间的联系.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.【情感、态度与价值观】进一步培养学生的综合解题能力,掌握解决问题的方法,培养探究精神.重点难点【重点】用函数图象求一元二次方程的近似解及一元二次不等式的解集.【难点】利用二次函数的图象求一元二次方程的近似根【教学方法】学生合作交流学习法三、教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.Ⅱ.讲授新课【例】用图象法求一元二次方程x2+2x-1=0的近似解(精确到0.1).解:画出函数y=x2+2x-1的图象,如图.由图象可知,方程有两个实数根,一个在-3和-2之间,另一个在0和1之间.先求位于-3和-2之间的根.由图象可估计这个根是-2.5或-2.4,利用计算器进行探索,见下观察上表可以发现,当x分别取-2.5和-2.4时,对应的y由正变负,可见在-2.5与-2.4之间肯定有一个x使y=0,即有方程x2+2x-1=0的一个根.题目只要求精确到0.1,这时取x=-2.5或x=-2.4作为根都符合要求.但当x=-2.4时,y=-0.04比y=0.25(x=-2.5)更接近0,故选x=-2.4.同理,可求出方程x2+2x-1=0在0和1之间精确到0.1的另一个根.方程x2+2x-1=0的近似解还可以这样求:分别画出函数y=x2和y=-2x+1的图象,如图,它们的交点A、B的横坐标就是方程x2+2x-1=0的根.函数图象求一元二次不等式的解集.:画出函数y=ax2+bx+c(a≠0)的图象,不等式ax2+bx+c>0的解集为图象在x轴上方的点所对应的x值所组成的集合,不等式ax2+bx+c<0的解集为图象在x轴下方的点所对应的x值所组成的集合.如下表:ax2+bx+c>0(a>0)的解集是x<x1或x>x2ax2+bx+c<0(a>0)的解集是x1<x<x2ax2+bx+c>0(a<0)的解集是x1<x<x2ax2+bx+c<0(a<0)的解集是x<x1或x>x2Ⅲ.课堂练习P34随堂练习Ⅳ.课时小结本节课学习的内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系;2.经历了用图象法求一元二次方程的近似根的过程,获得了用图象法求方程近似根的体验.3.了解一元二次方程不等式的解集可由二次函数图象直接得出结论。
1.4二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y=x2-6x+c的图象时,发现其顶点在x轴上,请你帮小唐确定字母c的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】二次函数图象与x 轴交点情况的判断以下函数的图象与x轴只有一个交点的是()A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac =(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D 的函数图象与x轴只有一个交点.应选D.变式训练:见《学练优》本课时练习“课后稳固提升〞第1题【类型二】利用函数图象与x轴交点情况确定字母的取值范围(2021·武汉模拟)二次函数y=kx2-6x+3的图象与x轴有交点,那么k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠0解析:∵二次函数y=kx2-6x+3的图象与x轴有交点,∴方程kx2-6x+3=0(k≠0)有实数根,即Δ=36-12k≥0,k≤3.由于是二次函数,故k≠0,那么k的取值范围是k≤3且k≠D.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x轴没有交点.变式训练:见《学练优》本课时练习“课堂达标训练〞第4题【类型三】利用抛物线与x轴交点坐标确定一元二次方程的解(2021·苏州中考)假设二次函数y =x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,那么关于x的方程x2+bx=5的解为()A.⎩⎪⎨⎪⎧x1=0,x2=4B.⎩⎪⎨⎪⎧x1=1,x2=5C.⎩⎪⎨⎪⎧x1=1,x2=-5D.⎩⎪⎨⎪⎧x1=-1,x2=5解析:∵对称轴是经过点(2,0)且平行于y轴的直线,∴-b2=2,解得bx2-4x=5,解得x1=-1,x2D.方法总结:此题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《学练优》本课时练习“课堂达标训练〞第1题探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x2+2x-3=-8的实数根(精确到0.1).解析:对于y=-x2+2x-3,当函数值为-8时,对应点的横坐标即为一元二次方程-x2+2x-3=-8的实数根,故可通过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y=-x2+2x-3的图象,如图.由图象可知方程-x2+2x-3=-8的根是抛物线y=-x2+2x-3与直线y=-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:xy因此x≈-1.4是方程的一个实数根.(2)另一个根可以类似地求出:xyx≈3.4是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y=h的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《学练优》本课时练习“课堂达标训练〞第8题探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如下列图的平面直角坐标系,问此球能否准确投中?(2)此时,假设对方队员乙在甲面前1米处跳起盖帽拦截,,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x=1时函数y的值与最大摸高3.1米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,209),B(4,4),C(7,3),其中B是抛物线的顶点.设二次函数关系式为y=a(x-h)2+k,将点A、B的坐标代入,可得y=-19(x-4)2+4.将点C的坐标代入上式,得左边=3,右边=-19(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.变式训练:见《学练优》本课时练习“课后稳固提升〞第7题三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系. 第2课伟大的历史转折1教学分析【教学目标】知识与能力知道中共十一届三中全会召开时间;了解它的背景,理解其重大意义;拨乱反正加强了民主与法制建设,推动了社会主义现代化建设;学会在开展的进程中认识历史人物、历史事件的地位和作用过程与方法学会运用原因与结果、联系与综合等概念,理解中共十一届三中全会的背景与历史意义情感态度与价值观认同中国共产党完全有能力领导中国人民取得社会主义建设事业的成功识改革开放是我国的强国之路【重点难点】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。
第2课时用估算法求一元二次方程的近似解1.能根据实际问题求一元二次方程的近似解.2.经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解,发展学生的估算意识和能力.3.进一步提高学生分析问题的能力,培养学生大胆尝试的精神,体验学习数学的乐趣,培养学生的合作学习意识.重点经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解.难点探索一元二次方程的近似解.一、情境导入教师:在上一节课中,我们得到了如下的两个一元二次方程:(8-2x)(5-2x)=18,即2x2-13x+11=0;(x+6)2+72=102,即x2+12x-15=0.上一节课的两个问题是否已经得以完全解决?你能求出各方程中x的值吗?这节课我们一起来研究一元二次方程的解.二、探究新知教师:对于前一节课第一个问题,你能设法估计四周末铺地毯部分的宽度x(m)吗?课件出示一元二次方程(8-2x)(5-2x)=18,提出问题:(1)x可能小于0吗?可能大于4吗?可能大于2.5吗?说说你的理由,并与同伴进行交流.(2)根据题目的已知条件,你能确定x的大致范围吗?(3)完成下表:x 0 0.5 1 1.5 2 2.52x2-13x+11(4)你知道所求的宽度x()是多少吗?还有其他求解方法吗?与同伴进行交流.分析:因为x表示的是所求的宽度,学生能意识到x不可能小于0;学生大多数能够从实际情况出发,意识到当x大于4或当x大于2.5时,将分别使地毯的长或宽小于0,不符合实际情况;学生在利用计算器对表格中的数据进行计算的过程中发现,当x=1时,代数式2x2-13x+11的值等于0;所求的宽度为1 m.教师:在前一节课的问题中,梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,把这个方程化为一般形式为x2+12x-15=0.引导学生思考以下问题:(1)小明认为底端也滑动了1 m,他的说法正确吗?为什么?(2)底端滑动的距离可能是2 m吗?可能是3 m吗?为什么?(3)你能猜出滑动距离x(m)的大致范围吗?(4)x的整数部分是几?十分位是几?学生思考后指名回答,教师进一步讲解:在此题中,梯子滑动的距离x>0是显而易见的,在下图中,求得BC=6 m,而BD<10m,因此CD<4 m.所以x的取值范围是0<x<4.x 0 1 2 3 4x2+12x-15 -15 -2 13 30 49x的取值是1和2时,所对应代数式的值是-2和13,而且随着x的取值越大,相应代数式的值也越大.因此若想使代数式的值为0,那么x的取值应在1和2之间.从而确定x的整数部分是1.教师启发引导学生在1和2之间继续找方程的解.学生可能有以下的做法.甲同学的做法:x 1 1.5 2x2+12x-15 -2 5.25 13所以1<x<进一步计算:x 1.1 1.2 1.3 1.4x2+12x-15 -0.59 0.84 2.29 3.76所以1.1<x<1.2.因此x的整数部分是1,十分位是1.x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 x2+12x-15 -0.59 0.84 2.29 3.76 5.25 6.76 8.29因此x的整数部分是1,十分位是1.注意:对于这两种做法,教师要及时地给与肯定和鼓励,并可将二者加以比较.教师:在解决某些实际问题的时候,可以根据实际情况确定出方程的解的大致范围,进而估算出一元二次方程的近似根.一般采用“夹逼法”.采用“夹逼法”求近似值的一般步骤:(1)将方程变为一元二次方程的一般形式;(2)根据实际情况确定方程的解的大致范围;(3)根据方程的解的大致范围,在这个范围内取一个整数值,然后把这个值代入方程左边的代数式进行验证,看是否能使方程左边代数式的值为0,如果为0,则这个数是方程的解;如果不为0,则再找出一个使方程左边的值最接近于0但小于0的整数,这个数就是方程的解的整数部分;(4)保留整数部分不变,小数部分可参照整数部分的方法进行,以此类推可得出该方程更准确的近似根.三、练习巩固五个连续整数,前三个数的平方和等于后两个数的平方和.你能求出这五个整数分别是多少吗?四、小结1.通过本节课的学习,你有什么收获?2.利用“夹逼法”求近似解的一般步骤是什么?五、课外作业教材第35页习题2.2第1~3题.本节课通过日常生活中丰富有趣的问题情境让学生感受方程是刻画现实世界的有效数学模型,体会“夹逼”数学思想在现实生活中随处可见,让学生真正经历“夹逼”数学思想解题的过程,从而更好地理解“夹逼”思想解一元二次方程的意义和作用,激发学生的学习兴趣.由学生探索交流,分析此种方法的优缺点,从而概括出这种方法的实质及解题步骤,这既给学生提供了一个充分从事数学活动的机会,又体现了学生是数学学习的主人的理念.学生亲身经历了知识的形成过程,不但改变了以往学生死记硬背的学习方式,而且在教学活动中培养了学生自主探索、合作交流等良好的学习习惯.本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,在此过程中,教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学.2 二次函数y =ax 2+bx +c 的图象和性质第2课时 二次函数y =a (x +h )2的图象和性质教学目标:1.使学生能利用描点法画出二次函数y =a(+h)2的图象。
1元二次方程求根公式一元二次方程求根公式是解决一元二次方程的一种方法,可以通过这个公式得出方程的解析解。
在解决实际问题时,我们经常会遇到一元二次方程,因此掌握求根公式是十分重要的。
一元二次方程的一般形式为:ax^2 + bx + c = 0。
其中,a、b、c 为已知系数,x为未知数。
我们通过求根公式可以得到方程的两个根,公式的形式如下:x1 = (-b + √(b^2 - 4ac)) / 2ax2 = (-b - √(b^2 - 4ac)) / 2a这里√(b^2 - 4ac)表示计算平方根,通常我们称为“根号”。
根号下面的内容称为判别式,它代表了根的性质。
接下来,我们将详细解释这个求根公式。
1.第一步:计算判别式方程的判别式Δ(Delta)等于 b^2 - 4ac,根据判别式的值我们可以判断方程的根的性质。
-当Δ>0时,方程有两个不同的实数根。
-当Δ=0时,方程有两个相等的实数根,也称为重根。
-当Δ<0时,方程没有实数解,但有两个复数解。
2.第二步:套用求根公式根据判别式的值,我们可以得到不同的求根公式。
-当Δ>0时:求根公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。
这时方程有两个不同的实数根。
-当Δ=0时:求根公式为x1=x2=-b/(2a)。
这时方程有两个相等的实数根。
-当Δ<0时:求根公式为x1=(-b+√(,Δ,)i)/2a,x2=(-b-√(,Δ,)i)/2a。
其中i为虚数单位,这时方程没有实数解,但有两个复数解。
3.第三步:将系数代入求根公式将方程的系数a、b、c代入求根公式后,即可计算出x1和x2的值。
需要注意的是,除数不能为0,即a不能为0,否则方程不再是二次方程。
下面我们通过一个实例来解释求根公式的使用。
例题:解方程2x^2+5x+3=0的根。
解法:根据给定方程,我们可以知道a=2,b=5,c=3计算判别式Δ = b^2 - 4ac = 5^2 - 4*2*3 = 25 - 24 = 1由于Δ>0,所以方程有两个不同的实数根。