虾和蟹组织中CAP检测方法
- 格式:pdf
- 大小:202.15 KB
- 文档页数:18
荧光酶联免疫法和免疫印迹法检测过敏原特异性免疫球蛋白E一致性分析张旭东;向莉;李启亮;李珍;任亦欣;王燕【期刊名称】《标记免疫分析与临床》【年(卷),期】2024(31)1【摘要】目的以荧光酶联免疫法的Immuno CAP系统为标准方法,探讨免疫印迹法的Allergy Screen系统的检验效能及在不同系统疾病诊疗中的临床应用价值。
方法收集2017年至2022年就诊于首都医科大学附属北京儿童医院过敏反应科的过敏原致敏患者血清样本4 525份,根据疾病类型分为呼吸系统疾病组、消化系统疾病组、多系统疾病组和其他系统疾病组。
采用Allergy Screen系统检测血清中的户尘螨、粉尘螨、烟曲霉、猫毛、狗毛、豚草、艾蒿、葎草、鸡蛋、牛奶、蟹、虾过敏原sIgE。
对Allergy Screen系统的检验效能、可靠性、级别一致性和不同疾病系统组的应用进行评价。
结果在检验效能上,Allergy Screen系统猫毛过敏原灵敏度最高为0.75,特异性为0.95。
其次为蟹过敏原,灵敏度为0.57,特异性为0.89。
Allergy Screen法检测各过敏原的Kappa值在0.122~0.866之间。
豚草一致性好,Kappa值为0.866。
Allergy Screen系统的Spearman相关分析结果显示,对粉尘螨、艾蒿、猫毛等级相关性均>0.7,关系非常紧密。
其中粉尘螨相关性最佳,为0.757。
Allergy Screen系统检测不同过敏原中,总体一致率为65.6%~90.3%,阴性符合率一致率为81.5%~97.9%,阳性一致率为9.1%~70.5%。
在不同系统疾病组间检验效能比较,特异性在各系统组间差异无统计学意义。
结论 Allergy Screen系统具有较高的诊断效能,适用于临床过敏原筛查检测。
【总页数】7页(P151-156)【作者】张旭东;向莉;李启亮;李珍;任亦欣;王燕【作者单位】国家儿童医学中心首都医科大学附属北京儿童医院儿科重大疾病研究教育部重点实验室国家呼吸系统疾病临床医学研究中心过敏反应科;国家儿童医学中心首都医科大学附属北京儿童医院检验中心【正文语种】中文【中图分类】R446【相关文献】1.免疫印迹法检测过敏原特异性IgE2.采用酶联免疫捕获法和荧光酶联免疫吸附法检测过敏原IgE抗体的比较分析3.酶联免疫捕获法检测耳鼻喉科患儿血清过敏原特异性IgE的价值4.新型蛋白质芯片与荧光酶联免疫法检测过敏原特异性IgE的对比研究5.微阵列酶联免疫荧光法和免疫印迹法检测过敏原特异性IgE的结果分析因版权原因,仅展示原文概要,查看原文内容请购买。
鱼虾混养池塘中虾病的常规检测技术
在鱼虾混养的养殖过程中,虾病是一种常见的病害,会给养殖者带来一定的经济损失。
因此,对虾病进行常规检测是非常重要的。
虾病的病原体主要有细菌、病毒、寄生虫、真菌等多种类型。
目前,针对虾病的常规
检测技术主要包括以下几种。
一、病死虾解剖法
这是一种直接检测虾病的方法,通常在病死虾的胸部进行解剖,取出内脏后可以通过
肉眼观察到病情。
如见到虾体内有坏疽、溃烂、肿胀等症状,即可初步判断虾体受到细菌
感染。
同时通过病死虾的解剖也可获得更多的病原体信息,有助于进一步的分析病情。
二、直接涂片法
这种技术是通过将患虾体表和内脏制成涂片,通过显微镜观察虾体内部是否有细菌、
真菌等病原微生物的存在。
直接涂片法操作简便、迅速,也可以根据现场的需要进行快速
判断病情。
三、生理生化检测法
此类检测方法是通过血、组织等检查样本进行生理生化参数检测,测定患虾体内不同
物质的含量和活性,评估虾体健康状况。
常见的检测项目有血液生化、免疫学指标、病原
菌的DNA等。
这些项目的测定结果可为疾病的确认和鉴别诊断提供依据。
四、免疫学检测法
虾的免疫学检测方法包括直接免疫荧光法、间接免疫荧光法、酶联免疫吸附试验等。
这些免疫学检测方法通过测定虾体液及组织中的特定抗体和抗原的含量及内在免疫效应,
诊断虾体内是否受到某种病原体的感染。
这些免疫学检测方法可以快速、高效地确认虾病
的病原体及其毒性程度,为疾病的早期预防和控制提供依据。
鱼虾混养池塘中虾病的常规检测技术鱼虾混养池塘通常会面临虾病的威胁。
虾病是水产养殖业中常见的疾病之一,会导致虾类的死亡和经济损失。
为了及时发现和控制虾病,混养池塘中需要进行常规的检测。
下面就是一些常规的虾病检测技术。
1. 可视观察:可视观察是最简单且常用的虾病检测技术之一。
通过观察虾体表面是否有异常现象,如病斑、溃疡或颜色改变等,可以初步判断虾是否感染了疾病。
2. 细菌培养:虾病常由细菌感染引起,因此细菌培养是一种常用的虾病检测技术。
将虾体或虾组织样本放入适当的培养基中进行培养,利用细菌的生长特性和形态特征,可以鉴定出引起虾病的细菌种类。
3. PCR技术:PCR技术可以快速、准确地检测出虾体内的病原体DNA。
通过提取虾体或虾组织样本的DNA,使用特定引物对目标病原体的DNA进行扩增,再通过凝胶电泳分析,可以诊断出虾是否感染了特定的虾病。
4. 免疫学检测:免疫学检测技术常用于检测虾体内的特定抗原或抗体。
典型的方法有酶联免疫吸附试验(ELISA)和免疫组化染色等。
通过检测虾体内特定病原体的抗原或虾体自身产生的抗体,可以了解虾是否感染了特定的虾病。
5. 组织病理学检测:组织病理学检测是通过对虾的组织进行显微镜观察,分析组织病变的形态学特征,来判断虾是否患病。
这种技术可以观察到细胞水肿、坏死、炎症反应等病理学改变,帮助确定虾病的类型和严重程度。
鱼虾混养池塘中虾病的常规检测技术包括可视观察、细菌培养、PCR技术、免疫学检测和组织病理学检测等。
通过这些技术的应用,可以及时发现虾病,采取相应的控制措施,保障鱼虾混养池塘的健康发展。
鱼虾混养池塘中虾病的常规检测技术
鱼虾混养池塘中常见的虾病包括白斑病、黄斑病、黑斑病、青壳病、黄体病等。
这些病害会给养殖业带来严重的经济损失,因此需要进行常规检测和防控。
1.标本采集
在检测之前,需要先采集虾的标本。
采集时应选择活体健康的虾,用虾网捕捉,并放置于干净的容器中。
最好选择胸部部位进行切割取样。
2.镜检
镜检是虾病检测的基础方法。
将虾样本放置在显微镜下,观察虾体内部组织是否发生异常变化,如细胞核周围大量有颗粒聚集等。
3.组织切片
组织切片是进一步检测虾病的必要步骤。
将虾标本进行组织处理和染色操作,制备形成组织切片后,再在显微镜下详细观察细胞核的变化是否发生了异样。
4.酶联免疫吸附测定法(ELISA)
某些虾病病原体的检测可以采用ELISA技术。
ELISA技术采用酶标记抗体或抗原与待测物相结合,使其呈色,通过颜色的变化可以检测出病原体的存在。
5.聚合酶链反应(PCR)
PCR技术是一种快速、敏感、特异性高的检测方法。
该技术根据虾病病原体的基因序列,通过特异性引物扩增出病原体目标基因,以证实病原体的存在。
6.核酸杂交技术(NFI)
NFI技术是一种检测分子互补性、分子相对分布和化学反应的方法。
将DNA或RNA探针与待测标本的DNA或RNA分子结合,以证明病原体的存在。
总之,对于鱼虾混养池塘中的虾病,应该采用多种方法进行检测,以确保检测结果的准确性和可靠性,为及时采取有效的防控措施提供科学依据。
中国人的虾、蟹致敏过敏原组分分析孙一帆;黄建芳;王彩霞;向军俭【期刊名称】《中国免疫学杂志》【年(卷),期】2014(000)010【摘要】目的:分析鉴定中国人群的虾、蟹致敏组分,确定主要过敏原及其致敏率,为深入研究食物过敏原检测及脱敏治疗提供依据。
方法:通过46份虾蟹过敏症患者血清,对刀额新对虾、罗氏沼虾和锈斑鲟的蛋白粗提液进行Western blot 分析,统计数据得出其全部过敏原组分及其致敏率,并确定主要过敏原。
结果:Western blot 结果显示,虾与过敏患者血清IgE的反应强于蟹,且虾、蟹间存在很多Mr相同的过敏原;32~38 kD原肌球蛋白( TM)、40 kD精氨酸激酶( AK)、60~80 kD血蓝蛋白( Hc)和21 kD肌质钙结合蛋白( SCP)是虾的主要致敏组分,TM、AK和Hc是虾、蟹共同的主要过敏原,其中TM的致敏率最高;与国外研究结果相比,AK、Hc和SCP的致敏率相对较高,且发现虾中48 kD蛋白组分(未知过敏原)也具有较高致敏率。
结论:对中国人群而言,虾的致敏性强于蟹,且虾、蟹的主要致敏组分基本相同;中国人的虾蟹主要致敏组分及其致敏率与国外研究大致相同但略有差异;发现一种潜在的新型过敏原。
【总页数】5页(P1325-1329)【作者】孙一帆;黄建芳;王彩霞;向军俭【作者单位】暨南大学广东省分子免疫与抗体工程重点实验室,广州 510632;暨南大学广东省分子免疫与抗体工程重点实验室,广州 510632;暨南大学广东省分子免疫与抗体工程重点实验室,广州 510632;暨南大学广东省分子免疫与抗体工程重点实验室,广州 510632【正文语种】中文【中图分类】R392.8【相关文献】1.不同方法提取和处理中华绒螯蟹组织蛋白的过敏原组分分析 [J], 朱黎娜;侯丽英;张盈莹;周宇捷;李韶深;李会强2.梭子蟹过敏原致敏组分的分析研究 [J], 赵绮华;赖荷;陈丽金;王锡忠;邹泽红3.不同虾类的过敏原及其过敏原性 [J], 李振兴;林洪;李明华;曹立民4.中国人民银行上海市分行行长毛应樑在中盚耸俦O沼邢薰旧虾J蟹止境闪⑶斓渖系慕不? [J],5.酶解处理对小鼠模型中虾主要致敏蛋白的致敏性影响分析 [J], 张弛;潘家荣;梁世正;冯涛;傅丽丽;张永勇因版权原因,仅展示原文概要,查看原文内容请购买。
GC-ECD法测定不同产地虾仁中的氯霉素残留庞维荣;王瑞;张强【摘要】建立了不同产地虾仁中氯霉素残留的含量测定方法,为评价虾仁的质量提供依据.采用乙酸乙酯提取,以N,O-双(三甲基硅烷基)三氟乙酰胺(BSTFA)/三甲基氯硅烷(TMCS)(体积比99∶1)为衍生试剂,在70℃反应30 min,使氯霉素转化为相应稳定的可挥发的衍生物,利用气相色谱-电子捕获检测法(GC-ECD法)进行测定.结果表明:样品不干扰氯霉素残留的测定,氯霉素的线性范围为0.5~ 250ng/mL(r=0.9924),平均回收率(n=9)71.2%、86.8%、86.8%,RSD值分别为9.7%、10.8%、4.8%.该方法简单、灵敏、准确、耐用性好,适用于虾仁中氯霉素残留量的测定.【期刊名称】《广州化工》【年(卷),期】2015(043)024【总页数】3页(P127-129)【关键词】虾仁;不同产地;氯霉素;含量测定;GC-ECD法【作者】庞维荣;王瑞;张强【作者单位】山西中医学院中药学院,山西晋中030619;山西中医学院中药学院,山西晋中030619;山西中医学院中药学院,山西晋中030619【正文语种】中文【中图分类】TQ914.1氯霉素(Chloramphenicol,CAP)是一种有效的广谱抗生素,常用于治疗伤寒、脑膜炎和尿路感染等疾病,对多种病原菌有较强的抑制作用[1]。
由于CAP 杀菌广谱,我国自20 世纪80 年代开始用于水产品养殖病害防治过程中。
然而研究发现氯霉素对人体的造血系统毒害极大[2],已引起国际组织和多个国家或地区的高度重视,中国、美国、欧盟、韩国、日本等都已对该药物在水产品中的残留做出了禁用和不得检出的规定[3-4]。
虾仁为对虾科(Penaeidae)、长臂虾科(Palaemonidae)或长额虾科(Pandalidae)可食用虾的干燥肌肉,药食两用,始载于《本草纲目》,归肾经,具有益肾壮阳,健胃,通乳之功效。
胶体金免疫层析法快速检测食品和兽药中的氯霉素残留潘嘉慧;田峻;赵亮亮;沈国权;朱海云【期刊名称】《兽医导刊》【年(卷),期】2014(000)012【总页数】3页(P19-21)【作者】潘嘉慧;田峻;赵亮亮;沈国权;朱海云【作者单位】佛山市质量计量监督检测中心,广东佛山 528225;佛山市质量计量监督检测中心,广东佛山 528225;佛山市质量计量监督检测中心,广东佛山528225;佛山市质量计量监督检测中心,广东佛山 528225;佛山市质量计量监督检测中心,广东佛山 528225【正文语种】中文氯霉素(Chloramphenicol,CAP)是一种广谱抗生素,其抗菌效果好,价格低廉,曾广泛应用于预防和治疗动物疾病。
然而氯霉素具有严重的毒副作用,会引起动物机体正常菌群失调,同时可能引起人的再生障碍性贫血,粒状白细胞缺乏症等疾病。
欧盟2377/90/EEC法规、美国FDA、日本的“肯定列表制度”等均明确规定氯霉素不能在任何动物制食品,以及动物的饲料和生长环境中使用。
2002年我国农业部发布235号公告《动物性食品中兽药最高残留量》,规定氯霉素及其盐、酯(包括:琥珀氯霉素)在所有食品动物、所有可食组织中不得检出。
对氯霉素的标准检测方法有色谱分析法和免疫检测法。
色谱分析法需要先进检测设备、样品前处理步骤繁琐,费用高、耗时长、对操作人员要求较高。
免疫分析法具有快速、灵敏度高、高通量的特点。
其中免疫分析方法有酶联免疫法、胶体金免疫层析技术等。
酶联免疫分析法操作相对繁琐,对操作人员的专业知识要求较高,相比之下,胶体金免疫层析技术基于肉眼水平的检测,不需任何仪器设备和试剂,比酶联免疫法省略了加显色剂和终止液的步骤,更简化的操作,体积小,易携带,几分钟就可用肉眼观察到颜色鲜明的实验结果,并可保存实验结果。
近年来已有制备氯霉素胶体金免疫层析试纸条的报道,但仍存在适用样品单一、灵敏度不够等不足,本研究特别从优化免疫抗原、包被抗原的结构及优化偶联技术角度出发,提高抗体的特异性、亲和力,从而增加检测的灵敏度和特异性。
氯霉素检测方法目前滥用CAP的现象仍然存在,由于其具有严重的毒副作用,残留于动物性食品中的氯霉素严重威胁着人类健康,因此,欧美许多发达国家早已限制或严格禁止氯霉素应用于食品动物,并对动物性产品中氯霉素的最高残留限量制定了严格的标准。
我国农业部于2002年12月明文规定氯霉素及其盐、脂等在所有食品动物的所有可食组织中不得检出。
但由于其低廉的价格和稳定的抗菌性,在畜牧业及水产养殖业中违法使用氯霉素的现象仍屡见不鲜。
因此,研究检测氯霉素的技术和方法是一项迫切的任务。
氯霉素残留分析检测方法的研究始于20世纪七八十年代,到目前为止,国内外用于氯霉素残留检测的方法已近十几种(Shen and Jiang, 2005; Polzer et al, 2006; Wesongah et al, 2007)。
在现有的氯霉素残留的检测方法中,色谱法、色谱-质谱联用法是目前国际上公认的确证方法,但其仍需不断地完善,以求简化操作过程、降低检测成本。
酶联免疫吸附法为半确证的筛选方法,与色谱-质谱联用技术等确证方法配合使用是今后的发展趋势。
微生物法不能用于定量分析,只能用于初步的定性筛选。
其他辅助方法,如荧光免疫分析法、放射免疫分析法、CHARM II分析法、毛细管区带电泳法等都不能实现现场快速检测,且检测设备及检测费用昂贵,有待进一步完善。
生物传感器技术灵敏度高、检测快速方便,是今后研究和开发检测氯霉素等残留物的重要方法之一。
1 微生物法微生物法是氯霉素检测最常用的方法,此方法又可分为棉签法(Swab test on premises, STOP)、杯碟法(Cylinder plate method, CPM)、纸片法、琼脂扩散法等。
焦炎朝等(2000)用藤黄八叠球菌菌株作为对氯霉素的敏感菌,测定不同标准浓度下的氯霉素的抑菌圈直径,绘制标准曲线,以此来对鱼肉组织中残留的氯霉素进行检测,其检测限为0.25µg/g,平均回收率为67.5%;还有人用试纸法、棉签法、发酵法等3种微生物法来检测牛奶中氯霉素的残留,其中试纸法的灵敏度可达3g/kg(宋杰等,2005)。
饲养虾期间要定期监测虾的免疫指标和抗氧化能力,评估其抵抗病害的能力。
在饲养虾的过程中,定期监测虾的免疫指标和抗氧化能力,能够评估其抵抗病害的能力。
免疫指标和抗氧化能力是虾体内免疫系统和抗氧化反应的重要指标,通过监测这些指标,可以了解虾的免疫和抗氧化能力的变化情况,及时采取相应措施,保障虾的健康养殖。
首先,免疫指标的监测是饲养虾的重要工作之一。
虾的免疫指标主要包括一些免疫相关的物质和细胞。
比如,可以监测虾体内的免疫球蛋白浓度、溶菌酶活性、过氧化物酶活性等指标。
这些指标反映了虾体内免疫系统的状态,通过不同时间段的监测,可以了解虾对病原菌的抵抗能力和虾体内免疫系统的变化情况。
特别是在饲养虾的高峰期,要加强监测,及时发现虾的免疫系统出现问题,采取相应的治疗措施,避免病害的发生。
其次,抗氧化能力的监测也是至关重要的。
随着虾饲养密度的增加和水体污染的加剧,虾体内的氧化应激现象也越来越严重。
虾的抗氧化能力是保障虾免受自由基损伤的重要因素。
因此,监测虾体内的抗氧化能力是非常必要的。
可以通过检测虾体内的抗氧化酶活性、抗氧化物质浓度和DNA损伤程度等指标来评估虾的抗氧化能力。
及时监测虾的抗氧化能力,可以了解虾的生理状态,同时也能够预防和减少虾因氧化应激而导致的病害。
为了评估虾的抵抗病害的能力,我们可以将不同时间点的监测数据进行比较和分析。
通过对监测数据的统计和分析,可以了解虾体内免疫指标和抗氧化能力的变化情况。
如果虾的免疫指标和抗氧化能力处于较高水平,说明虾具有较强的抵抗病害的能力。
相反,如果虾的免疫指标和抗氧化能力较低,说明虾容易受到病害的侵袭。
根据监测结果,可以采取相应的养殖管理措施,以提高虾的抵抗病害的能力。
总之,在饲养虾的过程中,定期监测虾的免疫指标和抗氧化能力,可以评估虾的抵抗病害的能力。
这些指标和能力的变化情况,直接关系到虾的健康和饲养效益。
因此,养殖者要重视饲养过程中的监测工作,做好相应的管理和调控,保障虾的健康养殖。
Determination of Chloramphenicol Residues in Shrimp and Crab Tissues by Electrospray Triple Quadrupole LC/MS/MS Joe Storey, Al Pfenning, Sherri Turnipseed, Gene Nandrea, Rebecca Lee,Cathy Burns, Mark MadsonDenver District Laboratory andAnimal Drugs Research CenterFood and Drug AdministrationP.O. Box 25087, Denver CO 80225-0087Abstract: This LIB describes a solid phase extraction and cleanup procedure for the determination of chloramphenicol residues in shrimp and crab. Chloramphenicol is detected, after chromatographic separation, using a Thermo Electron TSQ Quantum triple quadrupole mass spectrometer with an ESI source operating in negative ion mode. An internal standard is used to correct for variability of extraction and instrument response. Four product ions of chloramphenicol and one product ion of the internal standard are monitored using selected reaction monitoring (SRM). Chloramphenicol can be quantitated and confirmed at the 0.1ppb level.The Laboratory Information Bulletin is a tool for the rapiddissemination of laboratory methods (or information) which appear towork. It may not report completed scientific work. The user mustassure him/herself by appropriate validation procedures that LIBmethods and techniques are reliable and accurate for his/her intendeduse. Reference to any commercial materials, equipment, or processdoes not in any way constitute approval, endorsement, orrecommendation by the Food and Drug Administration.IntroductionRecently it has been reported that the antibiotic chloramphenicol (CAP) has been found in several imported foodstuffs from Asia, including shrimp, crab and crayfish. Initially, several confirmatory analytical LC/MS/MS methods for chloramphenicol using ion trap detection were developed by the Denver District Animal Drugs Research Center (ADRC) of FDA to address this problem. Specifically, LIBs 4284, 4287, 4294, 4281 (1-4) describe methods developed to qualitatively confirm CAP in shrimp, crayfish, crab, and honey, respectively, at 1ppb or higher. Using these methods over the last year, several FDA laboratories have positively confirmed the presence of CAP in many import samples of the aforementioned foods. These methods employ negative ion mode with electrospray ionization. In these methods full scan MS2 spectra were obtained not only from the parent CAP ion (m/z=321), but also from the corresponding m/z =323 ion M+2 (35Cl, 37Cl) isotope. The ion trap full scan data gave excellent positive identification but was not quite as successful for precise quantitation or sensitive enough to detect sub-ppb CAP levels. It was requested that a more sensitive confirmatory method for CAP be developed for use in the field.To gain this added sensitivity, typically a triple quadrupole LC/MS/MS operating in Selected Reaction Monitoring or SRM mode is used. In SRM, instead of monitoring the entire mass spectrum of the product ions of a parent ion, only a few selected product ions are monitored. Seattle District Laboratory has recently developed a triple quadrupole Finnigan TSQ 7000 LC/MS/MS method (5) for the analysis of CAP in shrimp (LIB 4290) which seems to work well with a LOQ of 0.3ppb and a LOD of 0.08ppb. However, our newer model triple quadrupole instrument (a TSQ Quantum, also using negative ion mode ESI LC/MS/MS) gave appreciable downward drift in response to chloramphenicol after many injections during a run sequence, possibly due to ion suppression. Another FDA laboratory (verbal communication) has also experienced a similar effect operating in negative ion mode. For this reason we would not be able to use the Seattle method without an internal standard.This LIB describes an additional method for the LC/MS/MS detection of chloramphenicol in shrimp and crab. Differences between our method and the Seattle method include:1) An internal standard (IS), meta-Chloramphenicol or m-CAP, is added at the beginning of the extraction in our method. The use of an internal standard self-corrects for any extraction variability from sample to sample and should also self -correct for any drift in detector response during a run. With the use of an IS, 0.1ppb CAP levels in tissue can be reliably quantitated.2) The extraction employed in our method does not use separatory funnels but uses disposable glassware to minimize the possibility of cross-contamination.3) A mobile phase of only acetonitrile and water without any salt buffers is used in our method which should help minimize MS maintenance. Overview of methodThe extraction used in the method described in this LIB is a simplified version of that described in LIB 4284. Ten grams of tissue composite (with added m-CAP internal standard) is extracted (3x) in ammoniated ethyl acetate. The combined extracts are evaporated and re-dissolved in water. A hexane wash removes fats. The extract is then applied to a reverse-phase SPE column and the CAP is eluted with methanol. The methanol is evaporated to dryness and the extract is reconstituted in water, filtered and injected into the LC/MS for analysis. The m/z 321 [M-H] ion for both CAP and the internal standard m-CAP is isolated in Q1, with five product ions isolated in Q3. Confirmation of CAP is made by comparison of ion chromatogram peaks with those of a CAP standard. Quantitation of CAP is made by taking the ratio of the CAP base peak area (m/z 152) to the internal standard m-CAP base peak area (m/z 207). This MS approach is an adaptation (as per a manuscript kindly provided to Denver Laboratory by FDA’s Center for Veterinary Medicine) of a Canadian method (6). The Canadian method’s HPLC column with a modified mobile phase is used in this LIB. Also we found that by adding the internal standard m-CAP at the beginning of the extraction instead of at the end increased the reproducibility of the method. Finally, we also used a higher level of internal standard (0.3ppb) to give amore intense response.Internal Standard preparation: (fortification solution preparation is in italics).The internal standard used is m-chloramphenicol (m-CAP), was custom synthesized for the FDA.1. A 100µg/mL stock standard m-CAP solution in acetonitrile (acn) is prepared.2. A 1:100 dilution in acn of the stock standard gives an intermediatestandard concentration of 1µg/mL or 1000ng/mL m-CAP.3. Three mL of the intermediate standard is diluted to 500mL with waterto give a m-CAP concentration of 6ng/mL diluent solution (Thisdiluent solution is used to prepare the LC/MS standards).4. Five mL of the intermediate standard is diluted to 250mL with water togive the m-CAP fortification solution of 20ng/mL. Every 10.0g sample is fortified with 150µL of m-CAP fortification solution for a 0.3ppb IS (internal standard) concentration—this is equivalent to a 6ng/mL final vial concentration of m-CAP.Chloramphenicol std preparation: (preparation of fortification solutions in italics).Chloramphenicol standard used is the current USP lot.1. A 100µg/mL stock standard CAP solution in acetonitrile (acn) isprepared.2. A 1:100 dilution with m-CAP diluent of the stock standard gives anintermediate standard concentration of 1µg/mL or 1000ng/mL CAP.3. A 1:10 dilution of the intermediate CAP standard with m-CAP diluentgives a 100ng/mL CAP concentration standard equivalent to a 5ppbCAP standard.4. A 6:10 and 4:10 dilution of the 5ppb CAP standard with m-cap diluentgives 3ppb and 2ppb standards respectively. A 5.00mL to 25.00mL dilution with m-cap diluent gives a 1ppb CAP standard.5. A6.00, 3.00, 1.00, and 0.00 mL dilution of the 1ppb CAP standard to10.00mL with m-CAP diluent gives 0.6, 0.3, 0.1, and 0ppb CAPstandards respectively. The 1.0, 0.6, 0.3 and 0.1ppb CAP standardswill have CAP concentrations of 20, 12, 6, and 2ng/mL respectively.The 0.3ppb standard can be used as the CCV solution. A similar, butprepared with a different CAP stock solution, 0.1ppb ICV CAPstandard (but using the same diluent solution) is also prepared.6. Preparation of CAP fortification solutions. (These solutions do not havem-cap diluent in them but are diluted with water). Using the 100ug/mL CAP stock solution above a 1:100 dilution is made with water; 1.00mL of this solution is diluted to 10mL with water to give CAP fortification solution #1 of 100ng/mL concentration. A 2:10 dilution of fortification solution #1 gives fortification solution #2 of 20ng CAP/mL in water.For 10.0g tissue, prepare a 0.1ppb spike by adding 50µL offortification solution #2. Prepare a 0.3ppb spike by adding 30uL offortification solution #1. Prepare a 0.6ppb spike by adding 60µL offortification solution #1 and so on.Sample preparation1. Place peeled (if applicable) tissue in blender, and blend with dryice using robot coupe mixer with pulsed action until contents areuniform (7).2. Accurately weigh (to the nearest tenth of a gram) 10.0g of blendedmeat composite into a 50 mL polypropylene (P/P) centrifuge tube.Fortify as described in the standard preparation section.3. Add 20 mL of extraction solution (EtOAC:NH4OH, 98:2)homogenize with vortexer until the entire mass is broken up(about 30 sec). Mix on pulsed Multitube Vortexer for 10 minutes.4. Centrifuge for 7 min @ 4000 rpm, decant into another 50mLpolypropylene centrifuge tube and place in N-Evap set at 50o C tobegin evaporation under nitrogen.5. Repeat extraction steps 3and 4 two more times, combining theextracts.6. Finish evaporating to dryness under nitrogen.7. Add 30mL of 0.05% acetic acid in H2O to dried extract, vortex ca.1 min to loosen residue then continue to vortex a minimum of 5min.8. Add 10 mL of hexane to the 50mL tube, and cap. Invert tubegently several times so that emulsions do not form but ensure anysolids are dissolved, centrifuge 3 min at 4000 rpm. Aspirate withdisposable pipette and discard hexane layer. Repeat hexane de-fatting step twice more with two additional 5mL portions ofhexane and on the final wash remove any surface lipid-likematerial at interface between the hexane and water.9. Condition each C18 SPE column with 3 mL MeOH followed by 3mL H2O. Transfer aqueous extract to a conditioned SPE systemconsisting of a C18 SPE column on bottom, with a 70 mL reservoiron top. The reservoir should have a Varian disposable filter on thebottom. With a vacuum manifold, allow flow through at about 1drop/sec. Apply positive pressure if necessary for clogged units.Remove the 70mL reservoir.10. Wash with 2mL water. Allow cartridges to run dry and pullvacuum for about 2min. Elute the C18 SPE with two, 2 mL MeOHvolumes into a 15mL disposable P/P centrifuge tube. EvaporateMeOH eluate to dryness in an automatic TurboVap undernitrogen with water-bath set at 50C.11. The dried extracts are reconstituted into 0.5mL water by vortexingfor 5 min to dissolve residue, and syringe-filtered through anAcrodisc membrane for injection into LC-MS system. Equipment and Reagents1. LC: ThermoQuest Surveyor MS Pump and autosampler.2. MS: ThermoQuest Finnigan TSQ Quantum with ESI source withmetal sample tube.3. Instrument software: Xcalibur Version 1.3.4. LC column: Waters brand Xterra C18, 3.5um, 2.1 x 150mm withguard column 2.1 x 10mm of same material.5. Robot Coupe model RSI BX4V (Scientific Industrial Division).6. Multitube pulsing vortex shaker with cartridges to vortex 15mLand 50mL polypropylene tubes. (Cole-Parmer cat. no. a-51601-00).7. N-EVAP: Organomation N-EVAP Analytical Evaporator.8. Gelman Laboratory Acrodisc LC 13mm Syringe filter with0.45um PVDF membrane PN 4452T.9. SPE columns: C18 Varian Bond Elut 6cc/500mg.10. HPLC grade or pesticide grade solvents-acetonitrile, ethyl acetate,ammonium hydroxide (30% as NH3), Glacial acetic acid.11. Varian 1-1/16” 20um disposable filter, p/n 12131024.12. Acrodisc 13mm 0.45um PVDF membrane (Gelman PN 4452T).13. Disposable 1mL syringe (Becton Dickinson part no 309602).14. TurboVap LV evaporator (Zymark part no. 48110) with associatedtube racks.Instrument Operating Parameters1. Perform instrument verification check using polytyrosine(prepared as per instrument manual and containing tyrosine, aswell as the trimer and the hexamer of tyrosine) to verify correctmass axis, sensitivity of Q1, resolution, and MS2 product ioncollision energy and sensitivity.2. A standard mixture should be analyzed initially to determine theretention times of CAP and m-CAP. The retention time should bewithin 5% of what was observed for standards previously (unlesscolumn or mobile phase have been changed). It may require oneor two injections of standard for retention times to stabilize ifinstrument has not been used recently.3. The response for 75 L injection of a 0.1 ppb standard (2ng/mL)for CAP should have a S/N>200:1 for the 321-> 152 MS2transition.4. Typical MS fore pump pressure (torr) for our TSQ were 0.98 to 1.Typical ion gauge pressure (torr) is around 8e-6.5. ESI source probe angle=60o6. Note: The tune file for CAP was obtained by syringe infusion of a10ng/µL chloramphenicol in water standard and adding LC flow(200µL/min 35%acn, 65% water mobile phase) through a tee. Bydoing this one of the parameters optimized was the spray voltagewhich gave an optimal value (for 321 response) of 4kV. A metalsample tube (50um high flow size) instead of a fused silica tubewas installed in the TSQ. (A metal sample tube is less susceptibleto attack from acetonitrile). Practical operation of the instrumentrevealed, however, that in negative ion mode the MS began togive, with successive injections, too high of a spray current (up to60µamps) when the LC flow was diverted to the MS during a run.To lower arcing, a lower spray voltage of 1500V was chosen.This greatly lowered the spray current and did not seem toadversely affect 321 sensitivity significantly. The MS/MS wasalso optimized for CAP: specifically the MS2 SRM responses ofthe CAP 321 parent ion (176, 194, 257, 152) were optimized fortheir respective collision energies. And similarly, the MS/MS wasalso optimized for m-CAP 207 product ion.Spray voltage =1500VSheath gas pressure=29Aux gas pressure=18Capillary temperature=350o CTube lens offset=70Collision pressure (argon)=1.5torr7. Typical operating pressures of a new column with guard (see equipmentand reagents section) using initial LC parameters is about 2200psi. and m-CAP typically elutes at 4.5min, CAP at 5 min (see Figs. 1-3). Also,although m-CAP and CAP elute when the LC mobile phase is 35%acetonitrile, for some dirtier matrices a further column rinse gradient up to 90% acetonitrile was needed (see LC gradient table below).TSQ Quantum Instrument MethodMS Editor Page (Segments & Scan Events) note: CE=collision energy, scan time in secMS Acquire Time (min) : 8.00Number of Segments: 1Segment: 1.Segment Time (min): 8.00Chrom Filter: UnusedQ2 Collision Gas Pressure(mTorr) : 1.50Tune Method: C:\Xcalibur\methods\CAP\captsq021303 .TSQTuneNumber of Scan Events: 5Scan Event: 1.Polarity:Negative.Data Type: Centroid.Scan Type: SRM TableSRM Table 1 Row(s)Parent Product Width Time CE Q1 PW Q3 PW Tube Lens320.900 152.000 1.500 0.20 22 0.90 0.90 Tune ValueSource CID: UnusedScan Event: 2.Polarity:Negative.Data Type: Centroid.Scan Type: SRM TableSRM Table 1 Row(s)Parent Product Width Time CE Q1 PW Q3 PW Tube Lens320.900 176.000 1.5000 0 .20 20 0.90 0.90 Tune ValueSource CID: UnusedScan Event: 3.Polarity: Negative.Data Type: Centroid.Scan Type: SRM TableSRM Table 1 Row(s)Parent Product Width Time CEQ1 PW Q3 PW Tube Lens320.900 194.000 1.500 0.20 18 0.90 0.90 Tune ValueSource CID: UnusedScan Event: 4.Polarity:Negative.Data Type: Centroid.Scan Type: SRM TableSRM Table 1 Row(s)Parent Product Width Time CE Q1 PW 03 PW Tube Lens320.900 257.000 1.500 0.20 17 0.90 0.90 Tune ValueSource CID: UnusedScan Event: 5. (note: the 207 SRM is from the m-cap or internalstandard.)Polarity:Negative.Data Type: Centroid.Scan Type: SRM TableSRM Table 1 Row(s)Parent Product Width Time CE Q1 PW 03 PW Tube Lens320.900 207.000 1.500 0.20 18 0.90 0.90 Tune ValueSource CID: UnusedDivert Valve Page number of valve positions = 3Divert valve in use during runDivert Time (min) Valve State==================================0.00 Inject \ Waste4.00 Load \ Detector5.50 Inject \ WasteSurveyor Auto sampler Method:Wash Bottle: methanolInjection volume (uL) 75.00Flush volume (uL) : 2000Flush/wash source is bottle.Needle height from bottom(mm) : 0.200Wash volume (uL) : 2000Flush speed (uL/s) : 250.000Post-Injection Valve switch time (min) : 0.000Syringe speed (ul/s) : 8.000Injection mode is partial loopTray temp control is on. Temp(C): 5.000Column oven control is on. Temp(C) : 30.000General:Solvent A name: WaterSolvent B name:Solvent C name:Solvent D name: AcetonitrileColumn name:Min. Pressure, bar: 10Max. Pressure, bar: 400Pumping Efficiency, %: 100Fractionations/Filling Stroke: 1Use custom stability limits: NoGradient Program:No. Time, min Flow, ul/min A, % B, % C, % D, %1 0.00 200 65 0 0 352 6.00 200 65 0 0 353 6.50 200 10 0 0 904 13.50 200 10 0 0 905 14.00 200 65 0 0 356 20.00 200 65 0 0 35Data Interpretation/ReportingThe [M-H-] (m/z321) ion for both CAP and the internal standard m-CAP is isolated (after LC separation) in Q1 with five product ions isolated in Q3.Specifically:Product ion m/z IonCAP257 [M-CO, HCl]-194 [M-H- Cl2HCCONH2]-176 [194-water]-152 [O2N-C6H4-CHOH]- (used as CAP base peak)m-CAP257 [M-CO, HCl]-207 [257-CH3Cl and rearrangement]- (m-CAP base peak) For positive CAP confirmation, the CAP MS2 ions of 152, 176, 194, and 257 should all be present at the same retention time (within 5%) as that ofstandard CAP. These ions should each be present with area abundances of at least one-half the abundance of the 0.1ppb CAP spike. The m-CAP should be present in all samples and the 207 m-CAP SRM should be present at thesame retention time (within 5%) as compared to that of standard m-cap for positive confirmation of the internal standard.Using the collision energies as specified in the instrument SRM table, the CAP MS2 product ions have the following average peak area ratios formultiple injections of CAP standards (normalized to the 152 ion as 100%).m/z m/z m/z257 194 17648% 20% 23%As part of the confirmation criteria for CAP, any presumptive CAP tissue positive must have similar ion abundance ratios to the average of the CAP standards (within 10% absolute difference). CAP tissue spikes in ourlaboratory typically gave % RSD’s of <5% for ion peak area ratios.For CAP quantitation, use m/z 321>152 peak area for CAP response and m/z 321>207 peak area for m-CAP response. Construct a calibration curve using all standards (including the zero standard) using the ratio of [(CAP 152)/(m-CAP 207)] responses vs. CAP concentration in ng/mL. Determine theconcentration of the sample extract from the calibration curve. Calculate the corresponding tissue concentration by: (assuming an initial 10g tissueportion, and a final vial (extract) volume of 0.5mL)[ng/g x (10g/0.5mL)]=ng/mL or [ ppb x 20] =ng/mL, orTissue ppb=[extract conc. in ng/mL]/20Results and DiscussionThe MS response to chloramphenicol was found to have a limited linear range. To quantitate at levels around 0.1ppb, a linear standard curve from 0 to 1ppb can be used (such curves gave correlation coefficients (r) of >0.995). However, to quantitate at both low and high (>1ppb CAP) levels a quadratic fit curve over a range of 0 to 5ppb was sometimes found to work better. Although a linear fit curve from 0-5ppb CAP might still have a r value of>0.995, using this curve often would adversely affect quantitation at low levels of 0.1ppb. (See figs 4 and 5).Using an internal standard, repeat injections of a CAP standard (or CCV standard) should easily give values of <25% difference from the initial value. Similarly, an injection of an independently made CAP standard (or ICV standard) should also easily give an agreement within 25% of the CCV CAP standard. A 0.1ppb CAP standard (2ng/mL CAP) gave an average signal-to-noise ratio (S/N) of 800:1 for SRM 152 and an average S/N ratio of 1400:1 for SRM 207 (m-CAP internal standard at 6ng/mL or 0.3ppb m-CAP-see Fig.1).Quantitation of 0.1ppb CAP levels allows the 3:1 compositing of individual tissue subs to be done and still ensures that a 0.3ppb quantitation level be maintained in any individual sub. (A 3-sub composite could have one sub containing 0.3ppb CAP blended (composited) with two subs containing no chloramphenicol and the composite would still be confirmed for CAP). See table 1 for recovery data of chloramphenicol in shrimp and crab.Safety1. Standard laboratory safety practices (lab coats, eye protection)should be followed.2. In addition any safety precautions listed in the determinative SOPfor preparation of reagents should be followed.3. Also follow instrument manufacturer’s guidelines for safeoperation of electrospray LC/MS (particularly with respect tohigh voltages, high current, and high temperatures).Figure 1 : 0.1ppb or 2ng/mL CAP std with 6ng/mL internal standard m-CAPPlot of MS2 ions m/z 152, 176, 194, 257 and 207 (m-CAP).Figure 2: 0.1ppb CAP shrimp spike with internal standard m-CAP spiked at 0.3ppb (equiv. to 6ng/mL m-CAP)Figure 3: Control shrimp blank spiked with 0.3ppb internal standard m-CAPFigure 4. CAP standard curve from 0-3ppb CAP (0-60ng/mL) showing quadratic fitCap concentration in ng/mLFigure 5. CAP standard curve over smaller range of 0-1ppb CAP showing linear fitCap concentration in ng/mLTable 1-Percent Recovery of CAP From Tissue SpikesSpike level (ppb)Number ofspikes (n)TissuematrixAvg. %recoveryRSD (%)0.053Shrimp8740.111Shrimp89250.23Shrimp99160.312Shrimp101140.67Shrimp95921Shrimp95na0.053Crab7640.15Crab106230.26Crab100280.36Crab1011713Crab92623Crab972References1. A. Pfenning, S. Turnipseed, J. Roybal, C, Burns, M.Madson, J. Storey and R. Lee, “Confirmation of MultiplePhenicol Residues in Shrimp by Electrospray LC/MS”(2002) Laboratory Information Bulletin4284 13 pages.2. S. Turnipseed, C, Burns, J. Storey, R. Lee, and A. Pfenning,“Confirmation of Multiple Phenicol Residues in Honey byElectrospray LC/MS” (2002) Laboratory InformationBulletin4281 12 pages.3. A. Pfenning, S. Turnipseed, J. Roybal, C, Burns, M.Madson, J. Storey and R. Lee, “Confirmation of MultiplePhenicol Residues in Crab by Electrospray LC/MS” (2002)Laboratory Information Bulletin4294 12 pages.4. A. Pfenning, S. Turnipseed, J. Roybal, C. Burns, M.Madson, J. Storey and R. Lee, “Confirmation of MultiplePhenicol Residues in Crawfish by Electrospray LC/MS”(2002) Laboratory Information Bulletin4289 12 pages.5. B. Neuhaus, J. Hurlbut, and W. Hammack, “LC/MS/MSAnalysis of Chloramphenicol in Shrimp” (2003) Laboratory Information Bulletin4290 18 pages6. Quon, et. al, “Chloramphenicol Residues in Honey”, (2002),Canadian Food Inspection Agency, Calgary FoodLaboratory, Additives and Chemical ContaminantsAnalytical Methods Manual, Method ACC-062-V1.0,Volume 5.7. E. Bunch, D. Altwein, L. Johnson, J. Farley and A.Hammersmith, (1995), J. AOAC Int. 78 (3) 883-887.。