聚合物共混改性原理与应用
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
2第二章聚合物共混改性基本原理聚合物共混改性是指将不同种类的聚合物混合在一起,通过相互作用、相互渗透以及相互分散,来改善聚合物材料的性能。
聚合物共混改性的基本原理涉及到相互作用、相容性、相互渗透、相互分散等多个方面。
首先是相互作用。
不同种类的聚合物在混合过程中,由于存在不同的结构和功能团,会产生各种相互作用力,如范德华力、静电作用力、水力作用力等。
这些相互作用力可以在分子层面上改变聚合物链的结构,从而改变聚合物材料的性能。
其次是相容性。
在聚合物共混改性中,相容性是一个重要的问题。
如果两种聚合物具有相似的结构和化学性质,则有可能发生物理和化学上的相容作用,使得共混体系更为稳定。
相反,如果两种聚合物的结构差异较大,则相互之间会出现相容性问题,容易导致相互分相和相互分离。
因此,相容性是影响聚合物共混改性的一个重要因素。
其次是相互渗透。
相互渗透是指在共混体系中,两种聚合物在分子层面上相互渗透的现象。
当两种聚合物具有适当的相互作用力和相容性时,可以实现相互渗透,从而改善材料的性能。
相互渗透可以改变聚合物的链结构和比例,提高聚合物的拉伸、弯曲和抗冲击性能等。
最后是相互分散。
相互分散是指在共混体系中,两种或多种聚合物能够均匀分布在整个材料中。
相互分散的好坏直接影响着材料的性能。
当聚合物分子链之间有较好的相容性和相互作用力时,可以实现较好的相互分散,从而提高材料的强度、硬度和耐热性等。
除了上述基本原理外,还有其他一些影响共混改性的因素,如共混体系的配比、共混过程的温度和压力等。
通过合理的配比和控制共混条件,可以进一步改善共混体系的性能。
总之,聚合物共混改性是通过相互作用、相容性、相互渗透和相互分散等多种机制来改善材料性能的一种方法。
通过合理选择和操控不同种类聚合物的相互作用,可以实现在材料中形成一种新的有机整体,从而提高材料的性能和应用范围。
聚合物共混改性原理与应用2聚合物共混改性原理与应用2相容性是指混合在一起的聚合物之间存在一定的相互吸引力,使它们能够混合均匀而不发生相分离。
聚合物的相容性取决于其化学结构和相似性,通常情况下,具有相近结构和性质的聚合物更容易相容。
相容性的提高可以通过一些物理或化学方法实现,例如对聚合物进行预处理,添加共混剂和控制混合温度等。
互穿网络是指两种或多种聚合物在混合过程中形成网络结构,使聚合物之间形成物理或化学的交联,从而增加材料的力学性能和稳定性。
通过互穿网络,不同聚合物之间形成的交联点可以加强材料的强度和刚度,同时也可以提高材料的抗拉伸性、耐热性和抗溶剂性等。
1.提高聚合物的力学性能:通过将不同类型的聚合物混合在一起,可以有效提高材料的强度、刚度、韧性和耐磨性等力学性能。
例如,将聚丙烯和聚酰胺共混改性,可以提高材料的强度和刚度,使其适用于制造高强度结构件。
2.改善聚合物的热稳定性:由于不同类型的聚合物具有不同的热分解温度和稳定性,通过共混改性可以使材料的热稳定性得到提高。
例如,将聚丙烯和聚苯乙烯共混改性,可以提高材料的热稳定性,使其在高温环境下更加稳定。
3.调控材料的光学性能:通过将具有不同光学性质的聚合物进行共混改性,可以调控材料的透明度、折射率和色散性能等。
这对于制备光学材料和光学器件具有重要意义。
4.改善材料的耐化学性:聚合物共混改性可以提高材料的抗溶剂性和抗腐蚀性,使其能够在恶劣的化学环境中使用。
例如,将聚乙烯和聚丙烯酸共混改性,可以提高材料的耐酸碱性和耐腐蚀性。
5.制备功能性聚合物材料:通过将具有不同功能的聚合物进行共混改性,可以制备出具有特定功能的复合材料,如导电聚合物、生物可降解聚合物和自愈合聚合物等。
这些功能性材料在电子、医疗和航空航天等领域有着广泛的应用前景。
总的来说,聚合物共混改性是一种有效的方法,可以通过将不同类型的聚合物混合在一起,实现材料性能的综合优化。
随着科技的不断发展,聚合物共混改性在材料领域的研究和应用将越来越广泛。
聚合物共混改性原理及应用```````201015014057一.名词解释(每题5分,共20分)1.聚合物共混答:共混改性包括物理共混、化学共混和物理/化学共混三大类型。
其中,物理共混就是通常意义上的“混合”。
如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。
2.分布混合和分散混合答:分布混合,又称分配混合。
是混合体系在应变作用下置换流动单元位置而实现的。
分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。
分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。
3.总体均匀性和分散度答:总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。
分散度则是指分散相颗粒的破碎程度。
对于总体均匀性,则采用数理统计的方法进行定量表征。
分散度则以分散相平均粒径来表征。
4.分散相的平衡粒径答:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。
即“平衡粒径”。
二.选择题(每题1.5分,共15分)1.热力学相容条件是混合过程的吉布斯自由能( A )A.小于零B 大于零C 等于零D 不确定2.共混物形态的三种基本类型不包括( D )3. A.均相体系4. B 海-岛结构5.C 海--海结构6. D 共混体系3.影响熔融共混过程的因素不包括(B )A 聚合物两相体系的熔体黏度B 聚合物两相体系的表面张力C 聚合物两相体系的界面张力D 流动场的形式和强度4.共混物形态研究的主要内容不包括( D )A 连续相和分散相祖分的确定B 两相体系的形貌C 相界面D 分散相的物理性能5.熔体黏度调节的方法不包括( B)A 温度B 时间C 剪切应力D 用助剂调节6.聚合物共混物的使用性能影响要素不包括( A )A 结晶时间B 结晶温度C 结晶速度D 结晶共混物的结构形态7.影响热力学相容性的因素不包括( B )A 相对分子质量B 共混组分的性能C 温度D 聚集态结构8.共混物性能的影响因素不包括( C )A 各组分的性能与配比B 共混物的形态C 温度D 外界作用条件9.影响聚合物的表面张力的相关因素不包括( B )A 温度B 压强C 聚合物的物态D 聚合物的相对分子质量10.填充体系的界面作用机理不包括( D )A化学键机理B 表面浸润机理C 酸碱作用机理D增韧剂机理三.填空题(每空1分,共15分)1.聚合物共混包括物理共混、化学共混和物理化学共混。
聚合物共混改性原理与应用5聚合物共混改性原理与应用51.化学相容性:聚合物共混改性的成功关键在于所选择的聚合物之间的化学相容性。
如果两种聚合物能够形成相互溶解的体系,即聚合物链能够相互扩散并与对方形成强的相互作用力,就可以达到物理共混,从而改变聚合物材料的性能。
2.相互作用力:共混聚合物中,不同聚合物之间的相互作用力起到了关键作用。
常见的相互作用力包括范德华力、氢键、弱键、离子相互作用等。
通过选择合适的相互作用力和控制共混聚合物中的相互作用力强度,可以实现聚合物材料的性能的调控和优化。
3.共混机理:共混聚合物的形成遵循着一定的共混机理。
常见的共混机理包括相互扩散和混合、溶解组成物实现物理相互作用、交联反应实现化学相互作用等。
在共混改性中,了解和理解聚合物共混机理对于实现想要的改性效果至关重要。
1.提高材料性能:通过将不同的聚合物共混在一起,可以使材料具备更多的优点和特性。
例如,将具有较高强度和刚性的聚合物与具有耐磨性和耐氧化性的聚合物共混,可以使材料具备优良的机械性能和耐用性。
2.改善加工性能:将具有较低熔点的聚合物和具有较高熔点的聚合物共混,可以降低材料的熔点和粘度,提高材料的流动性,从而改善材料的加工性能。
这种方法在塑料加工和合成纤维等领域中得到广泛应用。
3.调控界面性能:聚合物共混改性可以调控界面效应,从而改善材料的界面性能。
例如,在聚合物共混体系中添加亲水性或疏水性添加剂,可以改变材料的表面性质,使其具备阻燃性、防水性或亲油性等特性。
4.实现多功能化:通过将具有不同功能的聚合物共混在一起,可以实现材料的多功能化。
例如,将具有导电性的聚合物与具有光学性能的聚合物共混,可以制备出具有导光、导电和防静电等功能的材料,广泛应用于电子和光电器件中。
总之,聚合物共混改性是一种重要的材料改性方法,通过调控聚合物之间的化学和物理相互作用,可以实现材料性能的调控和优化。
在不同领域和应用中,聚合物共混改性具有广泛的研究和应用价值。
聚合物共混改性原理要点整理1.相容性与互溶性:共混改性的关键在于混合体系中组分的相容性和互溶性。
当两种聚合物具有相似的化学结构和相互相容的功能团时,它们往往具有较好的互溶性。
相反,如果两种聚合物具有不同的化学结构和互不相容的功能团,则会导致相分离和互不溶性。
因此,相容性和互溶性对于聚合物共混改性是非常重要的。
2.功能团的互相作用:在聚合物共混体系中,不同聚合物的功能团之间可以进行相互作用。
比如,酸酐可以与氢键形成聚合物链的交联点,改善聚合物的力学性能;硬度大的聚合物可以增加聚合物的刚性和强度;柔软的聚合物可以改善聚合物的柔韧性等。
因此,通过不同聚合物之间的功能团的互相作用,可以实现特定性能的调控和改善。
3.聚合物相互作用:当不同聚合物混合在一起时,它们之间的相互作用也会影响聚合物的性能。
例如,通过静电作用、范德华力、亲疏水性等,聚合物可以在分子水平上形成相互作用,进而影响聚合物体系的相行为、阻碍相分离、提高相容性。
通过调控聚合物之间的相互作用,可以改善混合聚合物的性能。
4.分散剂和助剂:在共混改性中,分散剂和助剂的使用也是非常重要的。
分散剂可以帮助将两种或多种聚合物均匀地分散在一起,避免相分离和互不溶性。
助剂可以改变聚合物的流动性、黏度、硬度等特性,进一步调节聚合物的性能。
通过合理选择和使用分散剂和助剂,可以实现更好的共混改性效果。
5.共混相的结构和形态:共混改性的聚合物体系中,聚合物相互作用和相互溶解会导致不同的结构和形态形成。
这些结构和形态对聚合物的性能有重要影响。
例如,共混相的尺寸、分散度、分布等可以影响材料的力学性能、热性能、导电性等。
通过控制共混相的结构和形态,可以调节聚合物的性能和特征。
综上所述,聚合物共混改性是一种提高聚合物性能和改变其性质的重要方法。
混合聚合物的相容性和互溶性、功能团的互相作用、聚合物之间的相互作用、分散剂和助剂的使用以及共混相的结构和形态等都是影响共混效果的重要因素。
聚合物共混改性原理与应用第二章聚合物共混的基本概念
1.试述聚合物共混改性的目的:获得预期性能的共混物。
2.试述共混改性的方法:1.熔融共混;2.溶液共混;
3.乳液共混;
4.釜内共混。
1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构②海—海结构
答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相
为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。
2、均相体系的判定
答:如果一种共混物具有类似于均相材料所具有的性能,这种共混物就可以认为是具有
均相结构的共混物。
在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准。
如果两
种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系。
第三章聚合物共混过程及其调控
3、简述分布混合与分散混合的概念
分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的.
分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4P17—18
答:在分散相颗粒的分散过程中,一个分散相大粒子(大液滴)分裂成两个较
展示的分散过程是逐步进行的重复破裂过程。
(大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。
其展示的分散过程是在瞬间完成的。
5、影响共混过程的5
答:a.调控共混温度,改变剪
答:(1,使We值增大,进而使形变增大;
较大的分散相粒径,使We值增大,易于变形.液滴的变形
连续相的黏度增大,使We值增大,进而使液滴(分散相)的形变增大;
σ下降,使We值增大,进而使液滴的形变增大;
的影响;⑥熔体弹性;⑦流动场形式的影响
⑧液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. (2)双小球模型:
①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散;
②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程;
③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相
颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。
7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37
①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量.
第四章聚合物共混物的微观形态
8、简述总体均匀性与分散度概念
总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。
分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。
9、简述影响分散相粒径的因素 P54
答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力
作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分
散过程产生影响,进而影响分散相粒径。
第五章 共混物的相容热力学和相界面
10、简述聚合物表面张力的影响因素
答:(1)温度 表面张力的本质是分子间相互作用。
由于分子间力随温度升高而下降,且与温度呈线性关系。
聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。
(2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。
根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。
结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。
这种变化,会使表面张力与温度的线性关系受到影响。
(3)相对分子质量 ;分子量大,表面张力也大。
(4)内聚能密度及溶解度参数
内聚能密度2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联;
溶解度参数 14.043.0m V K δφσ=;表面张力随溶解度参数的增大而增大。
11、简述共混体系界面张力、界面层厚度与相容性的关系
答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。
12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。
第六章 聚合物共混物的性能 13、试述影响共混体系熔融流变性能的因素
答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。
答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右;
(2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响
16、表面处理作用机理
答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结;
(2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度;
(3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能
17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。
答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。
(2)固体物性表征主要通过聚合物的性能(如玻璃化转变温度)研究共混体系的相容性,主要括热分析法(DSC)、膨胀计法、动态力学分析法(DM)等。
热力学表征主要采用一些特定的方法测定共混体系的热力学参数,如混合热ΔHm 、混合熵ΔSm 、溶解度参数δ及相互作用参数χ12等来表征体系的相容性,常用的方法有熔点降低法、吸附探针法和反气相色谱法等。