当前位置:文档之家› 二次项定理典型例题教师版

二次项定理典型例题教师版

二次项定理典型例题教师版
二次项定理典型例题教师版

典型例题

例1 在二项式n

x x ??? ?

?

+4

21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.

解:二项式的展开式的通项公式为:

4

324121C 21)

(C r

n r r n r

r

n r n

r x x x T --+=??

?

??= 前三项的.2,1,0=r

得系数为:)1(8

1

41C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8

1

123

12-+=+=n n n t t t , ∴8=n

通项公式为14

31681,82,1,02

1C +-+==r r r r r T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r

依次得到有理项为22

888944

8

541256

121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有17项.

例2 求10

321??? ?

?

-x x 的展开式中,系数绝对值最大的项以及系数最大的项.

分析:本题仍然属于抓通项公式解决特定项的问题,但是系数的绝对值的最大值或系数的最大值,需要对所有项

的系数的变化规律进行研究.由于系数的绝对值都是正数,我们可以用作商来研究系数绝对值的变化情况,另外各项系数正负交替,又便于用系数绝对值的大小变化抓系数的最大值. 解:展开式的通项公式为:6

53010

12

)1(C r r

r

r r x

T --+??-= 系数的绝对值为r r

-?2C 10

,记为1+r t . 用前后两项系数的绝对值作商得:

.)

1(210!102)!10(!)!9()!1(!10C 2C 2C 2C 101

1010)1(11012+-=?-?-?+==??=+-+-+++r r r r r r t t r

r r r r r r r 令

1)1(210≥+-r r 得:3

8

≤r 即0=r 、1、2时,上述不等式成立.

所以,系数的绝对值从第1项到第4项增加,以后逐项减小. 系数绝对值最大的项为第4项,2

52

5

3

34

10

4152)1(C x x T -=-=-.

从系数绝对值的变化情况及系数的正负交替,只要比较第3项与第5项的系数,

.8

105162102C ,4452C 44

1052

2

103==?==?=--t t 所以,系数最大的项为第5项,35

58105x t =. 例3 已知7

722107)21(x a x a x a a x ++++=- ,求:(1)7321a a a a ++++ ;

(2)7531a a a a +++;(3) 6420a a a a +++.

分析:本题是有关展开式系数和的问题,通过对等式中字母的赋值,往往会得到此类问题的结果.字母经常取的值有0、1、-1等.

解:(1)取0=x 可得10=a , 取1=x 得1)1(7

710-=-=+++a a a .

∴27321-=++++a a a a . (2)取1-=x 得77632103=-++-+-a a a a a a , 记75316420,a a a a B a a a a A +++=+++=. ∴7

3,1=--=+B A B A . 可得1094)31(2

1

,1093)13(2177-=+-==-=

B A 从而10947531-=+++a a a a . (3)从(2)的计算已知10936420=+++a a a a .

说明:赋值法不仅可以用来求二项展开式的系数和,对于展开式为多项式的代数式的系数和大多数也能用此方法解决,如:6

5

)21()1(x x -?+的展开式中各项的系数和为多少?可以看到6

5

)21()1(x x -+的展开式仍是多项式,令

1=x ,即得各项系数和为32)1(265=-.再比如:n n n x a x a x a a x x 2222102)1(++++=++ ,则

n a a a a 2420++++ 等于多少?本题可以由取1=x 得到各项系数和,取1-=x 得到奇数项系数和减去偶数项系数

和,两式相加可得)13(2

1220+=

+++n

n a a a .此外,为了赋值的需要,有时需要用一个新的二项式替换原来二项式,只要它们的系数等同即可.如:n

x x )log 2(2+的展开式中各项的系数和是多少?我们可以用一个更简单的二项式

n x )21(+代替原来的二项式,它们的系数并不改变,令1=x 便得各项系数和为n 3.

例4 (1)求10

3

)1()1(x x +-展开式中5x 的系数;(2)求6)21

(++

x

x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.

解:(1)10

3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5

510

C x ;用3

)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到5

4104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =?;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=?-,合并同类项得5x 项为:552

10310410510

63)C C 3C C (x x -=-+-. (2)2121???? ??+=++x x x x 12

5

1)21(???? ?

?+=++x x x x . 由121?

??? ?

?+x x 展开式的通项公式r r r

r r r x x T --+=??? ??=61212121C 1)2(C ,可得展开式的常数项为924C 6

12=. 说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的

问题来解决.

例5 求6

2)1(x x -+展开式中5x 的系数.

分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12

x x -+把它看成二项式展开. 解:方法一:[

]6

26

2)1()1(x

x x x -+=-+ -+++-+=442

5

6

)1(15)1(6)1(x x x

x x

其中含5x 的项为5

5145355566C 15C 6C x x x x =+-. 含5x 项的系数为6.

方法二:[

]

6

2

6

2)(1)1(x x x x -+=-+

62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=

其中含5x 的项为5

55566)4(15)3(20x x x x =+-+-. ∴5x 项的系数为6.

方法3:本题还可通过把6

2)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项

可由下列几种可能得到.5个因式中取x ,一个取1得到5

56C x .

3个因式中取x ,一个取2x -,两个取1得到)(C C 2

31336x x -??. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -??. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6. 例6 求证:(1)1212C C 2C -?=+++n n n n n n n ; (2))12(1

1

C 11C 31C 21C 1210-+=+++++

+n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求

一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项

式系数性质n

n n n n n 2C C C C 210=++++ .

解:(1)1

1C )!

()!1()!1()!()!1(!)!(!!C --=+--?=--=-?

=k n k

n n k n k n n k n k n k n k n k k

∴左边111101C C C ----+++=n n n n n n n =?=+++=-----1

1111012

)C C C (n n n n n n n 右边. (2)

)!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 1

1C 1

1)!()!1()!1(11+++=-++?+=k n n k n k n n .

∴左边112111C 11C 11C 11++++++++++=

n n n n n n n =-+=++++=+++++)12(1

1)C C (C 1111

1

2111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的

式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例

子:求10C 2C 2C 2C 22

108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10

)21(+的展开式接近,但要注意: 10

101099102210110010102C 2C 2C 2C C )21(?+?++?+?+=+

10101091092102C 2C 2C 21021++++?+= )C 2C 2C 210(2110

1099108210+++++=

从而可以得到:)13(2

1C 2C 2C 21010

101099

108210-=

++++ . 例7 利用二项式定理证明:98322--+n n 是64的倍数.

分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形

1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.

解:∵98322--+n n 98)18(989

11

--+=--=++n n n n 9818C 8C 8C 81211111--+?+?++?+=+-+++n n

n n n n n n

981)1(88C 8C 8211111--+++?++?+=-+++n n n n n n n 2

111118C 8C 8?++?+=-+++n n n n n

64)C 8C 8(1

12111?++?+=-+-++n n n n n 是64的倍数.

说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.

例8 展开5

2232??

? ??

-x x . 分析1:用二项式定理展开式.

解法1:5

2

232??? ?

?-x x 2

232524150

250523)2(23)2(23)2(??? ??-+??? ??-+??? ??-=x x C x x C x x C 5

2554

2453

22352323)2(23)2(??

? ??-+??? ??-+??? ??-+x C x x C x x C 10

742

532243840513518012032x x x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.

解法2:10535

232)34(232x x x x -=??? ?

?-2

33254315530510

)3()4()3()4()4([321-+-+=x C x C x C x ])3()3()4()3()4(55

54134532335-+-+-+C x C x C

)243716204320576038401024(3213

69121510

-+-+-=

x x x x x x

10

742532243

840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式n

b a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.

例9 若将10

)(z y x ++展开为多项式,经过合并同类项后它的项数为( ).

A .11

B .33

C .55

D .66 分析:10

)(z y x ++看作二项式10

])[(z y x ++展开.

解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即

∑=-?+=++=++10

0101010

10

)(])[()(k k k k

z y x C z y x z y x .

这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k

y x -+10)(展开,

不同的乘积k k

k

z y x C ?+-1010)

((10,,1,0 =k )展开后,都不会出现同类项.

下面,再分别考虑每一个乘积k k

k

z y x C ?+-1010)((10,,1,0 =k ).

其中每一个乘积展开后的项数由k

y x -+10)

(决定,

而且各项中x 和y 的指数都不相同,也不会出现同类项. 故原式展开后的总项数为66191011=++++ ,∴应选D .

例10 若n

x x ??

?

??-+21的展开式的常数项为20-,求n .

分析:题中0≠x ,当0>x 时,把三项式n x x ???

??-+21转化为n

n x x x x 2121??? ??-=??? ??-+;当0

n

n n

x x x x 21)1(21??? ?

?--

--=??? ??-+.然后写出通项,令含x 的幂指数为零,进而解出n . 解:当0>x 时n

n x x x x 2121??

? ??-=??? ??-+,其通项为r n r n r r r n r n r x C x x C T 222221)

()1()1()(--+-=-=, 令022=-r n ,得r n =,∴展开式的常数项为n

n n

C 2)1(-;

当0

n n x x x x 21)1(21??? ?

?----=??? ??-+, 同理可得,展开式的常数项为n

n n

C 2)1(-. 无论哪一种情况,常数项均为n n n

C 2)1(-.

令20)1(2-=-n

n n

C ,以 ,3,2,1=n ,逐个代入,得3=n .

例11 10

31??? ?

?

+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.

分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可.

解:使10

31??? ??+x x 有意义,必须0>x ;依题意,有43T T <,即3

373102

382101)(1)(??

? ??

31123891012910x

x ?????x )

. 解得564898

0<

???

??<<5648980x x . ∴应填:564898

0<

x

)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项

为112,求x 的值.

解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有3211

1∶∶∶∶

=+-k n k n k n C C C ,

321!

)1)(1(!

!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .

∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴???

?

???

=-+=+-????????=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k

14=?n ,5=k 所求连续三项为第5、6、7三项.

又由已知,1122log 1314=x

x

C .即82log =x x .

两边取以2为底的对数,3)(log 2

2=x ,3log 2±=x ,∴3

2

=x ,或3

2

-=x .

说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.

例13 n

x )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项. 解:556)2(x C T n =,667)2(x C T n =,依题意有8226

655=?=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为4

44851120)2(x x C T ==.

设第1+r 项系数最大,则有652

22

21

1881188≤≤???????≥??≥?++--r C C C C r r r

r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:5

61792x T =,6

71792x T =.

说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,

中间一项的二项式系数最大.

(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.

例14 设n

m

x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2

x 项的系数取最小值?并求这个最小值.分析:根据已知条件得到2

x 的系数关于n 的二次表达式,然后利用二次函数性质探讨最小值问题.

解:1111

=+=+m n C C n

m

. 2

11)(21222

222-+=-+-=+n m n n m m C C n

m

4

99

)211(55112211022+

-=+-=-=

n n n mn . ∵+∈N n , ∴5=n 或6,6=m 或5时,2

x 项系数最小,最小值为25.

说明:二次函数499)211(2+-

=x y 的对称轴方程为211

=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以4

99

)211(2+-n 的最小值在5=n 或6=n 处取得.

例15 若016

67

77

)13(a x a x a x a x ++++=- ,

求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.

解:(1)令0=x ,则10-=a , 令1=x ,则12827

0167==++++a a a a . ①∴129721=+++a a a .

(2)令1-=x ,则7

01234567)4(-=+-+-+-+-a a a a a a a a ② 由

2②①-得:8256]4128[217

7531=--=+++)(a a a a (3)由

2

①+得:6420a a a a +++

]

[2

10123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[2

1

7-=-+=. 说明:(1)本解法根据问题恒等式特点来用“特殊值”法.这是一种重要的方法,它适用于恒等式. (2)一般地,对于多项式n

n n

x a x a x a a q px x g ++++=+= 2

210)()(,)(x g 的各项的系数和为)1(g :

)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([2

1

--g g .

例16 填空:(1) 3230-除以7的余数_____________;(2) 155555

+除以8的余数是________________. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.

解:3230-3)2(103-= 3)8(10

-=3)17(10-+=377710

10910911010010-++++=C C C C

2]77[79

1081109010-+++?=C C C

又∵余数不能为负数,需转化为正数∴3230

-除以7的余数为5∴应填:5 分析(2):将5555写成55

)156(-,然后利用二项式定理展开.

解:155555

+15)156(55+-=15565656

555554555415555

055+-++-=C C C C

该式只有141555

55=+-C 不能被8整除,因此155555

+除以8的余数,即14除以8的余数,故余数为6.∴应填:6.

例17 求证:对于+∈N n ,1

11111+?

?

? ??

++

n n .证明:n

n ??

?

??+11展开式的通项

r

r

n r r n

r n r p n C T !1

1=

?=+r

r r n n n n r )

1()2)(1(!1+---=

)1

1()21)(11(!1n

r n n r ----=

. 1

111+??

? ??++n n 展开式的通项r

r n r r n r n r A n C

T

)1(!)1(1

1

'1

+=+?=++)1

1

1()121)(111(!1+--+-+-=

n r n n r . 由二项式展开式的通项明显看出'

1

1++

T ,所以1

11111+?

?

? ??

++

n n .

说明:本题的两个二项式中的两项为正项,且有一项相同,证明时,根据题设特点,采用比较通项大小的方法完成本题证明.

例18 在5

2)23(++x x 的展开式中x 的系数为( ).

A .160

B .240

C .360

D .800

分析:本题考查二项式定理的通项公式的运用.应想办法将三项式转化为二项式求解. 解法1:由5252]2)3[()23(++=++x x x x ,得k k

k k x x C T 2)3(5251?+=-+k k k x x C -+??=525)3(2.

再一次使用通项公式得,r

k r

r

k k

k

r x

C C T ---+???=21055132,

这里50≤≤k ,k r -≤≤50. 令1210=--r k ,即92=+r k .

所以1=r ,4=k ,由此得到x 的系数为240324

45=??C .

解法2:由5552)2()1()23(++=++x x x x ,知5)1(+x 的展开式中x 的系数为4

5C , 常数项为1,5)2(+x 的展开式中x 的系数为4

452?C ,常数项为52. 因此原式中x 的系数为240224

4

55

4

5=?+?C C . 解法3:将5

2)23(++x x 看作5个三项式相乘,

展开式中x 的系数就是从其中一个三项式中取x 3的系数3,

从另外4个三项式中取常数项相乘所得的积,即240234

4

41

5=???C C .∴应选B .

例19 已知9

2????

??-x x a 的展开式中3x 的系数为49,常数a 的值为___________. 分析:利用二项式的通项公式.解:在9

2???

?

??-x x a 的展开式中, 通项公式为=???

? ??-??

?

?

??=-+r

r

r r x x a C T 299

1923

2

9921)1(--???? ???-r r r r r x a C . 根据题设,3923=-r ,所以8=r .代入通项公式,得3

9169ax T =.

根据题意,4

9

169=a ,所以4=a .∴应填:4.

例20 (1)求证:n

n n n n n C C C )2(3)1(333133221-=-++?-?+-

(2)若4

43322104)32(x a x a x a x a a x ++++=+,求2

312420)()(a a a a a +-++的值.

分析:(1)注意观察n

n n n n n x C x C x C x ++++=+ 2211)1(的系数、指数特征,即可通过赋值法得到证明.(2)注意到)()()(432102

312

420a a a a a a a a a a ++++=+-++

)(43210a a a a a +-+-?,再用赋值法求之.解:(1)在公式n n n n n

n x C x C x C x ++++=+ 2211)1(中令3-=x ,即有 n

n

n n n n C C C )3()3()3(1)31(2211-++-+-+=- n n n n C C 3)1(3312

21?-+-?+?-= ∴等式得证.

(2)在展开式4

43322104)32(x a x a x a x a a x ++++=+中,

令1=x ,得443210)32(+=++++x a a a a a ;令1-=x ,得4

43210)32(+-=+-+-a a a a a . ∴原式)()(4321043210a a a a a a a a a a +-+-?++++=1)32()32(4

4=+-?+=. 说明:注意“赋值法”在证明或求值中的应用.赋值法的模式是,在某二项展开式,如

n n n x a x a x a a bx a ++++=+ 2210)(或b a C a C b a n n n n n 110)(-+=+2

22b a C n n -+

n n n b C ++ 中,对任意的A x ∈(A b a ∈,)该式恒成立,那么对A 中的特殊值,该工也一定成立.特殊值x 如何选

取,没有一成不变的规律,需视具体情况而定,其灵活性较强.一般取1,1,0-=x 较多.一般地,多项式)(x f 的各

项系数和为)1(f ,奇数项系数和为

)]1()1([21--f f ,偶次项系数和为)]1()1([2

1

-+f f .二项式系数的性质n n n n n n C C C C 2210=++++ 及15314202-=+++=+++n n n n n n n

C C C C C C 的证明就是赋值法应用的范例. 例21 若+∈N n ,求证明:372433

2+-+n n 能被64整除.

分析:考虑先将3

23+n 拆成与8的倍数有关的和式,再用二项式定理展开.

解:37243

3

2+-+n n 37243322+-?=+n n 3724931+-?=+n n 3724)18(31+-+?=+n n

3724]8888[31

1112111101+-+?++?+?+??=+++-++++n C C C C C n n n n n n n n n n 3724]18)1(888[3121111+-+?+++?+?+?=-+++n n C C n n n n n 3724)]98(8888[3211121111+-++?++?+?+?=-+-+++n n C C C n n n n n n n 3724)98(3]888[831132121112+-+?+++?+?+?=-+-+-+-n n C C C n n n n n n n 64]8

88[6433212111++?+?+?=-+-+- n n n n n C C , ∵1

8

-n ,2

118

-+?n n C ,3

218

-+?n n C ,…均为自然数,

∴上式各项均为64的整数倍.∴原式能被64整除.

说明:用二项式定理证明整除问题,大体上就是这一模式,先将某项凑成与除数有关的和式,再展开证之.该类题也可用数学归纳法证明,但不如用二项式定理证明简捷.

例22 已知n x x )3(23

2

+的展开式各项系数和比它的二项式系数和大992. (1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.

解:令1=x 得展开式的各项系数之和为n

n 22)31(=+,而展开式的二项式系数的和为

n n n n n n C C C C 2210=++++ ,∴有992222=-n n .∴5=n .

(1)∵5=n ,故展开式共有6,其中二项式系数最大的项为第三、第四两项. ∴6

2

23

3225

390)3()(x x x C T =?=,3

223

22

3235

4270)3()(x x x C T =?=.

(2)设展开式中第1+r 项的系数最大.

3

41052532

513)3()(r r r r r

r

r x

C x x C T +-+??=??=,故有??????≥??≥?++--1

1551

15

5

3333r r r r r r r

r

C C C C 即???????+≥--≥.1

351,613

r r r

r 解得2

927≤≤r .∵N r ∈,∴4=r ,即展开式中第5项的系数最大.326

421324

55405)3()(x x x C T =??=

说明:展开式中二项式系数最大的项与系数最大的项是两个不同的概念,因此其求法亦不同.前者用二项式系数

的性质直接得出,后者要列不等式组;解不等式组时可能会求出几个r ,这时还必须算出相应项的系数后再比较大小.

例23 求证:(1) p

n m m p

n p m n p

m n C C C C C C C +-=+++0

1

1

; (2) 11

4

4

2

2

24

2333--+?=++++n n n

n n

n n n C C C C (K n 2=,*N n ∈)

分析:(1)注意到两列二项式两乘后系数的特征,可构造一个函数;也可用构造一个组合问题的两种不同解法找到思路.(2)同上构造函数,赋值.

证明:(1)(法1)∵n m n

m x x x )1()1()1(+?+=++,

∴)1()1()

1(221221n

n n n n m m m m m n

m x C x C x C x C x C x C x ++++?++++=++ .∴此式左右两边展开式中P x 的系数必相

等.左边P x 的系数是p

n m C +,右边P x 的系数是

022110m p n p m n p m n p m n C C C C C C C C ?++?+?+?-- , ∴p

n m m p n p m n p m n p m n C C C C C C C C C +--=?++?+?+?022110 .等式成立.

(法2)设想有下面一个问题:要从n m +个不同元素中取出P 个元素,共有多少种取法?该问题可有两种解法.一种解法是明显的,即直接由组合数公式可得出结论:有p

n m C +种不同取法.第二种解法,可将n m +个元素分成两组,第一组有m 个元素,第二组有n 个元素,则从n m +个元素中取出P 个元素,可看成由这两组元素中分别取出的元素组成,取法可分成1+P 类:从第一组取P 个,第二组不取,有0

n p

m C C ?种取法;从第一组取1-P 个,从第二组取1个,有1

1

n p m C C ?-种取法,…,第一组不取,从第二组取P 个.因此取法总数是p n m n p m

n p m n p

m C C C C C C C C ?++?+?+?--0

22

1

1

而该问题的这两种解法答案应是一致的,故有

p

n m m p n p m n p m n p m n C C C C C C C C C +--=?++?+?+?022110 . (2)∵n 为偶数,∴n n n n n n n C C C C 333)31(2210++++=+ ;n

n n n n n n C C C C 333)31(2210+-+-=- .

两式相加得)333(2244

4

2

2

n

n n

n n n n

n

C C C C ++++=+ ,∴11

4

4

2

2

24

2333--+?=++++n n n

n n

n n n C C C C .

说明:构造函数赋值法,构造问题双解法,拆项法、倒序相加法都是证明一些组合数恒等式(或求和)的常用方

法.

相似三角形基本知识点+经典例题

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说 a 是 d c b ,,的第四比例项,那么应得比例式为: a d c b =.② ()a c a b c d b d ==在比例式::中, a 、d 叫比例外项, b 、 c 叫比例内项, a 、c 叫比 例前项,b 、d 叫比例后项,d 叫第四比例项,如果,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的 黄金分割点,其中AB AC 215-= ≈0.618AB .即AC BC AB AC == 简记为: 1 2 长短== 全长 注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于 黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?.

动能定理应用及典型例题(整理好用)

动能定理及应用 动能定理 1、内容: ________________________________________________________________________________ 2、动能定理表达式:_____________________________________________________________________ 3、理解:①F合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 F合做正功时,物体动能增加;F合做负功时,物体动能减少。 ②动能定理揭示了合外力的功与动能变化的关系。 4、适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5、应用动能定理解题步骤: A、明确研究对象及研究过程 B进行受力分析和做功情况分析 C确定初末状态动能 D列方程、求解。 1、一辆5吨的载重汽车开上一段坡路,坡路上S=100m坡顶和坡底的高度差h=10m汽车山坡前的速度是10m/s, 上到坡顶时速度减为 5.0m/s。汽车受到的摩擦阻力时车重的0.05倍。求汽车的牵引力。 2、一小球从高出地面H米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对 球的平均阻力是其重力的多少 倍。 3、质量为5 x 105kg的机车,以恒定的功率沿平直轨道行驶,在大 速度15m/s ?若阻力保持不变,求机车的功率和所受阻力的数值. 3min内行驶了1450m,其速度从10m/s增加到最 4、质量为M、厚度为d的方木块,静置在光滑的水平面上,如图所示,一子弹以初速度V。水平射穿木块,子弹 的 质量为m,木块对子弹的阻力为f且始终不变,在子弹射穿木块的过程中,木块发生的位移为L。求子弹射穿木块后,子弹和木块的速度各为多少? 5、如图所示,质量m=1kg的木块静止在高h=1.2m的平台上,木块与平台间的动摩擦因数使木块产生位移S=3m时撤去,木块又滑行9=1m时飞出平台,求木块落地时速度的大小?"=0.2,用水平推力F=20N, 2 (空气阻力不计, g=10m/s ) 图6-3-1

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2 =EG· EF,故EB 2 =EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】 本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD ”过渡,使问题得证,证法 二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.

动能和动能定理,机械能守恒典型例题和练习(精品)

学习目标 1. 能够推导并理解动能定理知道动能定理的适用围 2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。 3. 确立运用动能定理分析解决具体问题的步骤与方法 类型一 .常规题型 例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力 F 跟 木 箱 前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ 例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则: A. E2=E1 B. E2=2E1 C. E2>2E1 D. E1<E2<2E1 针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比 t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)

类型二、应用动能定理简解多过程问题 例3:质量为m的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后撤去外力,物体还能运动多远? 例4、一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 2-7-6 针对训练2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s2)

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

(完整版)相似三角形中的射影定理

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= ·AC2= ·BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。 B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例3.(1)已知ABC ?中,?=∠90ACB ,AB CD ⊥,垂足为D ,DE 、DF 分别是BDC ADC ??和的 高,这时CAB DEF ??和是否相似? 【拓展练习】 1、已知:如图,AD 是△ABC 的高,BE ⊥AB ,AE 交BC 于点F ,AB ·AC=AD ·AE 。求证:△BEF ∽△ACF A B A B C N D C

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

相似三角形中的射影定理

相似三角形中的射影定 理 -CAL-FENGHAI.-(YICAI)-Company One1

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= · AC2= · BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD 的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o ,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF A B M C N D C

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

相关主题
文本预览
相关文档 最新文档